DETERMINATION OF ANTIBIOTICS IN WASTEWATER USING AMPEROMETRIC SENSORS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Sensors for the amperometric determination of the antibiotics Cefur and Ceftr in aqueous solutions have been developed. The sensor electrodes were coated with molecularly imprinted polymers (MIPs). To evaluate selectivity and recognition capabilities toward target molecules, the imprinting factor and selectivity coefficient were determined. The imprinting factors were 5.3 for MIP-Cefur and 5.1 for MIP-Ceftr. The results showed that MIPs have greater selectivity and target recognition ability compared to non-imprinted polymers. The antibiotics were quantified in aqueous solutions using the calibration curve method. The experimentally determined detection ranges for Cefur and Ceftr were from 1.0 × 10⁵ to 0.1 g/L. Detection limits were 3.5 × 10⁶ g/L for Cefur and 6.6 × 10⁶ g/L for Ceftr. The MIP-modified sensors were successfully tested in wastewater samples. The results demonstrate the feasibility of using amperometric sensors based on MIPs for detecting sodium cefuroxime and sodium ceftriaxone in model and real wastewater systems.

About the authors

P. T. Gam

Voronezh State University, Faculty of Chemistry; Hanoi University of Business and Technology, Faculty of Pharmacy

Email: alex-n-z@yandex.ru
Voronezh, Universitskaya Sq., 1, 394018, Russia; Hanoi, HAI BA TRUNG, 124, Vinh Tuy, 11600, Vietnam

O. A. Tertyshnikova

Voronezh State University, Faculty of Chemistry

Voronezh, Universitskaya Sq., 1, 394018, Russia

A. N. Zyablov

Voronezh State University, Faculty of Chemistry

Email: alex-n-z@yandex.ru
Voronezh, Universitskaya Sq., 1, 394018, Russia

A. Y. Vybornyi

Voronezh State University, Faculty of Chemistry

Voronezh, Universitskaya Sq., 1, 394018, Russia

N. A. Litvinova

OOO RVC-Voronezh

Voronezh, 21, Antokolskogo St., 394062, Russia

References

  1. Kümmerer K. Antibiotics in the aquatic environment – A review – Part I // Chemosphere. 2009. V. 75. № 4. P. 417.
  2. Polianciuc S. I., Gurzău A. E., Kiss B., Ştefan M. G., Loghin F. Antibiotics in the environment: causes and consequences // Med. Pharm. Rep. 2020. V. 93. № 3. P. 231.
  3. Sutradhar I., Ching C., Desai D., Heins Z., Khalil A. S., Zaman M. H. Effects of antibiotic interaction on antimicrobial resistance development in wastewater // Sci. Rep. 2023. V. 13. P. 1.
  4. Mozaz S. R., Moreira I. V., Giustina S.V.D., Llorca M., Barceló D. Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment // Environ. Int. 2020. V. 140. P. 1.
  5. Naresh V., Lee N. A Review on biosensors and recent development of nanostructured materials-enabled biosensors // Sensors. 2021. V. 21. № 4. P. 1.
  6. Guliy O. I., Zaitsev B. D., Alsowaidi A. K. M., Karavaeva O. A., Lovtsova L. G., Borodina I. A. Biosensor systems for antibiotic detection // Biophysics. 2021. V. 66. № 4. P. 555.
  7. Baranwal J., Barse B., Gatto G., Broncova G., Kumar A. Electrochemical sensors and their applications: A review // Chemosensors. 2022. V. 10. № 9. P. 1.
  8. Pimpilova M. A brief review on methods and materials for electrode modifcation: electroanalytical applications towards biologically relevant compounds // Discover Electrochem. 2024. V. 1. № 12. P. 1.
  9. Qin W., Liu X., Chena H., Yang J. Amperometric sensors for detection of phenol in oilfield wastewater using electrochemical polymerization of zincon film // Anal. Methods. 2014. V. 6. № 15. P. 5734.
  10. Hussain C. M., Keçili R. Ch. 8 – Electrochemical techniques for environmental analysis / Modern Environmental Analysis Techniques for Pollutants. Netherlands: Elsevier, 2020. P. 199.
  11. Czolkos I., Dock E., Tønning E., Christensen J., Nielsen M. W., Carlsson C., Mojzíková R., Skládal P. Prediction of wastewater quality using amperometric bioelectronic tongues // Biosens. Bioelectron. 2016. V. 75. P. 375.
  12. Gkika D. A., Tolkou A. K., Lambropoulou D. A., Bikiaris D. N., Kokkinos P., Kalavrouziotis I. K., Kyzas G. Z. Application of molecularly imprinted polymers (MIPs) as environmental separation tools // RSC Appl. Polym. 2024. V. 2. P. 127.
  13. Uzun L., Turner A. P. F. Molecularly-imprinted polymer sensors: Realising their potential // Biosens. Bioelectron. 2016. V. 76. P. 131.
  14. Ali Y. A. E. H., Hejji L., Lahcen A. A., Villarejo L. P., Azzouz A., Kim K. H. Progress and prospects in the green synthesis of molecularly imprinted polymers for sorptive extraction and sensing applications toward emerging contaminants in various sample matrices // TrAC, Trends Anal. Chem. 2024. V. 170. P. 1.
  15. Ansari S., Karimi M. Novel developments and trends of analytical methods for drug analysis in biological and environmental samples by molecularly imprinted polymers. // TrAC, Trends Anal. Chem. 2017. V. 89. P. 146.
  16. Gui R., Jin H., Guo H., Wang Z. Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors // Biosens. Bioelectron. 2018. V. 100. P. 56.
  17. Carballido L., Karbowiak T., Cayot P., Gerometta M., Sok N., Bou-Maroun E. Applications of molecularly imprinted polymers and perspectives for their use as food quality trackers // Chem. 2022. V. 8. № 9. P. 2330.
  18. Fan Y., Yu R., Chen Y., Sun Y., Waterhouse G. I. N., Xu Z. A capillary electrophoresis method based on molecularly imprinted solid-phase extraction for selective and sensitive detection of histamine in foods // Molecules. 2022. V. 27. № 20. P. 1.
  19. Suzaei F. M., Daryanavard S. M., Rehim A. A., Bassyouni F., Rehim M. A. Recent molecularly imprinted polymers applications in bioanalysis // Chem. Pap. 2023. V. 77. P. 619.
  20. Leibl N., Haupt K., Gonzato C., Duma L. Molecularly imprinted polymers for chemical sensing: A tutorial review // Chemosensors. 2021. V. 9. P. 1.
  21. Song C., Rutledge G. C. Electrospun polyimide fiber membranes for separation of oil-in-water emulsions // Sep. Purif. Technol. 2021. V. 270. P. 1.
  22. Kim M., Kim G., Kim J., Lee D., Lee S., Kwon J., Han H. New continuous process developed for synthesizing sponge-type polyimide membrane and its pore size control method via non-solvent induced phase separation (NIPS) // Micropor. Mesopor. Mater. 2017. V. 242. P. 166.
  23. Государственная фармакопея Российской Федерации XV издания. Москва, 2023.
  24. Qureshi T., Memon N., Memon S. Q., Abro K., Shah S. W. LC/UV determination of cefradine, cefuroxime, and cefotaxime in dairy milk, human serum and wastewater samples // Springerplus. 2013. V. 2. № 1. P. 1.
  25. Malgundkar S. S., Mulla S. Validated HPTLC method for simultaneous determination of ceftriaxone sodium and tazobactam sodium in combined dosage form // J. Pharm. Biol. Sci (IOSR-JPBS). 2014. V. 9. № 2. P. 60.
  26. Дуванова О. В., Соколова С. А., Дьяконова О. В., Зяблов А. Н., Селеменев В. Ф., Козадеров О. А. Физико-химические свойства и морфология поверхности полиимидов с молекулярными отпечатками пальмитиновой кислоты // Сорбционные и хроматографические процессы. 2026. Т. 16. № 5. C. 610.
  27. Зяблов А.Н., Хальзова С.А., Селеменев В.Ф. Сорбция красных пищевых красителей полимерами с молекулярными отпечатками. // Изв. Вузов. Химия и хим. технология. 2017. Т. 60. № 7. С. 42.
  28. Зяблов А.Н., Дуванова О.В., Володина Л.В., Селеменев В.Ф., Дьяконова О.В. Патент РФ № 137946. Заявка от 03.10.2013, опубликован 27.02.2014.
  29. Дворкин В.И. Метрология и обеспечение качества количественного химического анализа. М.: Химия, 2001. 263 с.
  30. Li Y., Luo L., Kong Y., Li Y., Wang Q., Wang M., Li Y., Davenport A., Li B. Recent advances in molecularly imprinted polymer-based electrochemical sensors // Biosens. Bioelectron. 2024. V. 249. P. 1.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».