Optimization of Sample Preparation Methods to Improve the Efficiency of Nanoparticle Extraction from Environmental Samples
- Authors: Brzhezinskiy A.S.1, Ermolin M.S.1, Karandashev V.K.1,2, Fedotov P.S.1
-
Affiliations:
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
- Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences
- Issue: Vol 80, No 9 (2025)
- Pages: 937-948
- Section: ORIGINAL ARTICLES
- Submitted: 10.09.2025
- URL: https://bakhtiniada.ru/0044-4502/article/view/308729
- DOI: https://doi.org/10.31857/S0044450225090033
- EDN: https://elibrary.ru/btrilr
- ID: 308729
Cite item
Abstract
The methodological gap in studying environmental nanoparticles is largely due to their low content (typically around 0.01–0.1 %) in ash, dust, or soil, making their isolation and quantitative analysis difficult. This study demonstrates the effectiveness of a new sample preparation method for volcanic ash samples (sequential dispersion in 0.1 M NaCl and 2 mM Na₄P₂O₇) followed by nanoparticle separation using flow field-flow fractionation in a rotating spiral column with 2 mM Na₄P₂O₇ solution as the eluent. The method increases the yield of isolated nanoparticles by an order of magnitude and allows for the detection of elements (such as Be, Cr, Co, Zn, Ag, Sb, Te, Ta, W, Tl, Bi) in volcanic ash nanoparticles at concentrations below the detection limits of ICP-MS when deionized water is used as the eluent. Moreover, it avoids distortions caused by artifacts, such as the formation of poorly soluble calcium phosphates during sample preparation. This methodology could serve as a foundation for systematic studies of ash nanoparticles from various types of volcanoes, as well as urban dust.
About the authors
A. S. Brzhezinskiy
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
Email: abrzhezinskiy@gmail.com
19 Kosygina St., Moscow, 119991 Russia
M. S. Ermolin
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
Email: abrzhezinskiy@gmail.com
19 Kosygina St., Moscow, 119991 Russia
V. K. Karandashev
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences; Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences
Email: abrzhezinskiy@gmail.com
19 Kosygina St., Moscow, 119991 Russia; 6 Osipyan St., Chernogolovka, Moscow Region, 142432 Russia
P. S. Fedotov
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
Author for correspondence.
Email: abrzhezinskiy@gmail.com
19 Kosygina St., Moscow, 119991 Russia
References
- Senesi N., Wilkinson K.J. Biophysical Chemistry of Fractal Structures and Processes in Environmental Systems. Chichester: Wiley, 2008. 323 p.
- Buzea C., Pacheco I.I., Robbie K. Nanomaterials and nanoparticles: Sources and toxicity // Biointerphases 2007. V. 2. № 4. P. 17.
- Gottschalk F., Nowack B. The release of engineered nanomaterials to the environment // J. Environ. Monit. 2011. V. 13. № 5. P. 1145.
- Poole C.P., Frank J.О. Introduction to Nanotechnology. Hoboken: Wiley-Interscience, 2003. 400 p.
- Niemeyer C.M. Nanoparticles, Proteins and Nucleic Acids: Biotechnology Meets Materials Science // Angew. Chem. Int Ed. 2001. V. 40. № 22. P. 4128.
- Ju-Nam Y., Lead J.R. Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications // Sci. Total Environ. 2008.V. 400. № 1–3. P. 396.
- Schmid G. Nanoparticles: From Theory to Application. Wiley-VCH, 2004. 434 p.
- Ermolin M.S., Fedotov P.S. Separation and characterization of environmental nano- and submicron particles // Rev. Anal. Chem. 2016. V. 35. № 4. P. 185.
- Faucher S., Le Coustumer P., Lespes G. Nanoanalytics: History, concepts, and specificities // Environ. Sci. Pollut. Res. 2019. V. 26. № 6. P. 5267.
- Jeevanandam J., Barhoum A, Yen S.C, Dufresne A., Danquah M.D. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations // Beilstein J. Nanotechnol. 2018. V. 9. № 1. P. 1050.
- Ermolin M.S., Ivaneev A. I., Brzhezinskiy A.S., Fedynina N.N., Karandashev V.K., Fedotov P.S. Distribution of platinum and palladium between dissolved, nanoparticulate, and microparticulate fractions of road dust // Molecules. 2022. V. 27. № 18. P. 1.
- Ivaneev A.I., Brzhezinskiy A.S., Karandashev V.K., Ermolin M.S, Fedynina N.N., Fedotov P.S. Nanoparticles of dust as an emerging contaminant in urban environments // Environ. Geochem. Health. 2024. V. 46. № 10. Article 367.
- Lespes G., Faucher S., Slaveykova V.I. Natural nanoparticles, anthropogenic nanoparticles, where is the frontier? // Front. Environ. Sci. 2020. V 8. P. 1.
- Hochella M.F., Mogk D.W., Ranville J.F., Allen I.C., Luther G.W., Marr L.C., McGrail B.P., Murayama M., Qafoku N.P., Rosso K.M., Sahai N., Schroeder P.A., Vikesland P.J., Westerhoff P., Yang Y. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system // Science. 2019. V. 363. P. 1414.
- Taylor D. A. Dust in the wind // Environ. Health Perspect. 2002. V. 110. № 2 P. 80.
- Houghton J. Global warming // Rep. Prog. Phys. 2005. V. 68. № 6. P. 1343.
- Cather S.M., Dunbar N.W., McDowell F.W., McIntosh W.C., Scholle P.A. Climate forcing by iron fertilization from repeated ignimbrite eruptions: The icehouse-silicic large igneous province (SLIP) hypothesis // Geosphere. 2009. V. 5. № 3. P. 315.
- Trovato M.C., Andronico D., Sciacchitano R., Ruggeri R.M., Picerno I., Angela D.P., Visalli G. Nanostructures: Between natural environment and medical practice // Rev. Environ. Health. 2018. V. 33. № 3. P. 295.
- Schiavo B., Morton-Bermea O., Meza-Figueroa D., Valera D. Characterization of volcanic ash nanoparticles and study of their fate in aqueous medium by asymmetric flow field-flow fractionation-multi-detection // Sci. Total Environ. 2023. V. 899. Article 165742.
- Ermolin M.S., Shilobreeva S.N., Fedotov P.S. Study of the chemical composition of ash nanoparticles from the volcanoes of Kamchatka // Geochem. Int. 2023. V. 61. № 4. P. 348.
- Ермолин М.С., Федотов П.С., Карандашев В.К., Шкинев В.М. Методология выделения и элементного анализа наночастиц вулканического пепла // Журн. аналит. Химии. 2017. Т. 72. № 5. С. 462. (Ermolin M.S., Fedotov P.S., Karandashev V.K., Shkinev V.M. Methodology for separation and elemental analysis of volcanic ash nanoparticles // J. Anal. Chem. 2017. V. 72. № 5. P. 533.)
- Ermolin M.S., Fedotov P.S., Malik N.A. Karandashev V.K. Nanoparticles of volcanic ash as a carrier for toxic elements on the global scale // Chemosphere. 2018. V. 200. P. 16.
- Ермолин М.С., Федотов П.С. Выделение наночастиц из почвы и пыли и их исследование методом масс-спектрометрии с индуктивно- связанной плазмой в режиме анализа единичных частиц // Журн. аналит. химии. 2023. Т. 78. № 9. С. 771. (Ermolin M.S., Fedotov P.S. Isolation of nanoparticles from soils and dust and their study by single particle inductively coupled plasma mass spectrometry // J. Anal. Chem. 2023. V. 78. № 9. P. 1115.)
- Ivaneev A. I., Ivanov A. V., Sergeev A. A., Belyaev A. V., Fedotov P. S. Separation and preparation of nanoparticles from urban dust for biological studies // Anal. Methods. 2025. V. 17. № 9. P. 1921.
- Иванеев А.И., Ермолин М.С., Федотов П.С. Разделение, характеризация и анализ нано- и микрочастиц окружающей среды: современные методы и подходы // Журн. аналит. химии. 2021. Т. 76. № 4. С. 291. (Ivaneev A.I., Ermolin M.S., Fedotov P.S. Separation, characterization and analysis of environmental nano- and microparticles: State-of-the-art methods and approaches // J. Anal. Chem. 2021. V. 76. № 4. P. 413.)
- Hofman J, Bartholomeus H., Janssen S., Calders K., Wuyts K., Wittenberghe A.V., Samson R. Influence of tree crown characteristics on the local PM10 distribution inside an urban street canyon in Antwerp (Belgium): A model and experimental approach // Urban For. Urban Green. 2016. V. 20. P. 265.
- Imoto Y., Yasutaka T., Someya M., Higashino K. Influence of solid-liquid separation method parameters employed in soil leaching tests on apparent metal concentration // Sci. Total Environ. 2018. V. 624. P. 96.
- Liu G., Wang J., Xue W., Zhao J., Wang J., Liu X., Effect of the size of variable charge soil particles on cadmium accumulation and adsorption // J. Soils Sediments. 2017. V. 17. № 12. P. 2810.
- Padoan E., Romè C., Ajmone-Marsan F. Bioaccessibility and size distribution of metals in road dust and roadside soils along a peri-urban transect // Sci. Total Environ. 2017. V. 601–602. P. 89.
- Delgado M. F., Rojas-Lillo Y., Peña J., Muñoz A., Campos-Vallette M., Rivas M. Determination of metallic nanoparticles in soils using microwave-assisted extraction and spICP-MS // Talanta. 2024. V. 263. Article 125742
- Sánchez-Cachero A., Rodríguez Fariñas N., Jiménez-Moreno M., Rodríguez Martín-Doimeadios R. C. Quantitative analysis and characterization of PtNPs in road dust based on ultrasonic probe assisted extraction and single particle inductively coupled plasma mass spectrometry // Spectrochim. Acta B. 2023. V. 203. Article 106665.
- Fedotov P.S., Ermolin M.S., Katasonova O.N. Field-flow fractionation of nano- and microparticles in rotating coiled columns // J. Chromatogr. 2015. V. 1381. P. 202.
- Ermolin M.S., Ivaneev A.I., Fedynina N.N., Fedotov P.S. Nanospeciation of metals and metalloids in volcanic ash using single particle inductively coupled plasma mass spectrometry // Chemosphere. 2021. V. 281. Article 130950
- Yi Z., Loosli F., Wang J., Berti D., Baalousha M. How to distinguish natural versus engineered nanomaterials: insights from the analysis of TiO2 and CeO2 in soils // Environ. Chem. Lett. 2020. V. 18. № 1. P. 215.
- Loosli F., Yi Z., Wang J., Baalousha M. Improved extraction efficiency of natural nanomaterials in soils to facilitate their characterization using a multimethod approach // Sci. Total Environ. 2019. V. 677. P. 34.
- Schwertfeger D.M., Velicogna J.V., Jesmer A.H., Saatcioglu S., McShane H., Scroggins R.P., Princz J.I. Extracting metallic nanoparticles from soils for quantitative analysis: Method development using engineered silver nanoparticles and SP-ICP-MS // Anal. Chem. 2017. V. 89. № 4. P. 2505.
- Karandashev V.K., Khvostikov V.A., Nossenko S.V., Burmil Zh.P. Stable highly enriched isotopes in routine analysis of rocks, soils, grounds, and sediments by ICP-MS // Inorg. Mater. 2017. V. 53. № 14. P. 1432.
- Ермолин М.С., Иванеев А.И., Федотов П.С., Карандашев В.К., Федюнина Н.Н., Еськина В.В. Выделение и количественный анализ наночастиц дорожной пыли // Журн. аналит. химии. 2017. Т. 72. № 5. С. 448-461. (Ermolin M.S., Ivaneev A.I., Fedotov P.S., Karandashev V.K., Fedynina N.N., Eskina V.V. Isolation and quantitative analysis of road dust nanoparticles // J. Anal. Chem. 2017. V. 72. № 5. P. 520.)
- Regelink I.C., Weng L., Koopmans G.F., Riemsdijk W H. Asymmetric flow field-flow fractionation as a new approach to analyse iron-(hydr)oxide nanoparticles in soil extracts // Geoderma. 2013. V. 202–203. P. 134.
- Сафронова Т.В. Неорганические материалы для регенеративной медицины // Неорг. материалы. 2021. Т. 57. № 5. С. 467. (Safronova T.V. Inorganic materials for regenerative medicine // Inorg. Mater. 2021 V. 57. № 5. P. 443).
Supplementary files
