Identification and Authentication of Vegetable Oils by Digital Colorometry and IR Spectroscopy Methods
- 作者: Amelin V.G.1,2, Emelyanov O.E.1
-
隶属关系:
- Vladimir State University named after Alexander and Nikolay Stoletovs
- The Russian State Center for Animal Feed and Drug Standardization and Quality (VGNKI)
- 期: 卷 80, 编号 2 (2025)
- 页面: 217-225
- 栏目: ORIGINAL ARTICLES
- ##submission.dateSubmitted##: 04.05.2025
- ##submission.dateAccepted##: 04.05.2025
- URL: https://bakhtiniada.ru/0044-4502/article/view/290517
- DOI: https://doi.org/10.31857/S0044450225020107
- EDN: https://elibrary.ru/aepdry
- ID: 290517
如何引用文章
详细
The possibility of a simple and accessible method of identification and authentication of edible vegetable oils using methods of digital colorometry, Fourier transform infrared spectroscopy in the near and middle spectral regions and chemometric processing of the analysis results is shown. Identification by species of oils (mustard, linseed, corn, olive and sunflower), authentication (authenticity and adulteration) was carried out by the intrinsic coloring of vegetable oils and fluorescence when the samples were irradiated with monochromatic light in the UV, visible and infrared regions. (365, 390, 470, 565, 700, 850, 880, 940 nm and 400–10 000 cm–1). A device and method for measuring colorometric parameters using a smartphone and data processing using RGBer, PhotoMetrix PRO®, XLSTAT, and The Unscrambler X specialized software are proposed. Application of chemometric analysis allowed to establish the authenticity of vegetable oils and to reveal the facts of adulteration by diluting expensive oils with cheaper ones.
作者简介
V. Amelin
Vladimir State University named after Alexander and Nikolay Stoletovs; The Russian State Center for Animal Feed and Drug Standardization and Quality (VGNKI)
编辑信件的主要联系方式.
Email: amelinvg@mail.ru
俄罗斯联邦, Vladimir; Moscow
O. Emelyanov
Vladimir State University named after Alexander and Nikolay Stoletovs
Email: amelinvg@mail.ru
俄罗斯联邦, Vladimir
参考
- Yang Y., Ferro M.D., Cavaco I., Liang Y. Detection and identification of extra virgin olive oil adulteration by GC-MS combined with chemometrics // J. Agric. Food Chem. 2013. V. 61. P. 3693.
- Tomazzoni G., Meira M., Quintella C.M., Zagonel G.F., Costa B.J., de Oliveira P.R. et al. Identification of vegetable oil or biodiesel added to diesel using fluorescence spectroscopy and principal component analysis // Am. Oil. Chem. Soc. 2014. V. 91. P. 215.
- Al-Kahtani H.A., Ahmed M.A., Abou-Arab A.A., Hayat K. Identification of lard in vegetable oil binary mixtures and commercial food products by FTIR // Qual. Assur. Saf. Crops Foods. 2017. V. 09. № 1. P. 11.
- Chen Y., Wang J., Xu Q., Luo Q., Zheng X. Identification of edible-vegetable-oil types based on multi-kernel learning and multi-spectral fusion // IOP Conf. Ser.: Mater. Sci. Eng. 2018. V. 452. Article 022054.
- ГОСТ 30623-98. Масла растительные и маргариновая продукция. Метод обнаружения фальсификации. М.: Стандартинформ, 2018. 23 с.
- Панасюк А.Л., Свиридов Д.А., Шилкин А.А. Установление подлинности растительных масел с использованием метода изотопной масс-спектрометрии // Пищевые системы. 2022. Т. 5. № 4. С. 369. https://doi.org/10.21323/2618-9771-2022-5-4-369-375
- Bontempo L., Paolini M., Franceschi P., Ziller L., García-González D.L., Camin F. Characterisation and attempted differentiation of European and extra-European olive oils using stable isotope ratio analysis // Food Chem. 2019. V. 276. P. 782. https://doi.org/10.1016/j.foodchem. 2018.10.077
- Шаока З.А.Ч., Большаков Д.С., Амелин В.Г. Использование смартфона в химическом анализе // Журн. аналит. химии. 2023. Т. 78. № 4. С. 317. (Shogah Z.A.Ch., Bol'shakov D.S., Amelin V.G. Using a smartphone in chemical analysis // J. Anal. Chem. 2023. V. 78. № 4. P. 426). https://doi.org/10.31857/S0044450223030131
- Calabria D., Mirasoli M., Guardigli M., Simoni P., Zangheri M., Severi P. et al. Paper-based smartphone chemosensor for reflectometric on-site total polyphenols quantification in olive oil // Sens. Actuators B. 2020. V. 305. Article 127522.
- Nikolova K., Perifanova-Nemska M.,Georgieva P., Boyadjiev D. Identification of vegetable oil adulterants in sunflower oil through discriminant analysis of colorimetric parameters // Bulgarian J. Agric. Sci. 2013. V. 19. № 3. P. 508.
- Christodouleas D., Fotakis C., Papadopoulos K., Dimotikali D., Calokerinos A.C. Luminescent methods in the analysis of untreated edible oils: A review // Anal. Lett. 2012. V. 45. № 5-6. P. 625.
- Song W., Nanfeng J., Wang H. Use of smartphone videos and pattern recognition for food authentication // Sens. Actuatоrs B. 2019. V. 304. Article 127247.
- De Melo Milanez K.D.T., Pontes M.J.C. Classification of extra virgin olive oil and verification of adulteration using digital image and discriminant analysis // Anal. Methods. 2015. V. 7. P. 8839.
- Karagiorgos N., Nenadis N., Trypidis D., Siozios S., Nikolaidis S., Tsimidou M.Z. An approach for estimating adulteration of virgin olive oil with soybran oil using image analysis / 6th International conference on modern circuits and systems technologies (MOCAST). Thessaloniki, Greece, 04–06 May 2017. https://doi.org/10.1109/mocast.2017.7937672
- Milanez K.D.T.D.M., Pontes M.J.C. Classification of edible vegetable oil using digital image and pattern recognition techniques // Microchem. J. 2014. V. 113. P. 10.
- Перегончая О.В., Королькова Н.В., Нуридинов Ш.З., Соколова С.А. Перспективы использования цифровой цветометрии в контроле цветности растительных масел при их рафинации // Агропромышленные технологии Центральной России. 2019. Т. 4. № 14. С. 29.
- Амелин В.Г., Шаока З.А.Ч., Большаков Д.С., Третьяков А.В. Идентификация и аутентификация растительных масел методом цифровой цветометрии и хемометрического анализа // Заводск. лаборатория. Диагностика материалов. 2023. Т. 89. № 2-1. С. 5. https://doi.org/10.26896/1028-6861-2023-89-2-I-5-12
补充文件
