Recognition of objects of similar composition and determination of fluoroquinolones using the reaction of carbocyanine Cy7-hydrazine with 4-dimethylaminobenzaldehyde

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study is devoted to the development of a fluorimetric version of the “fingerprint” method based on conducting indicator reactions in the presence of an object. Observing the reaction over time increases the amount of information received compared to the static version, which allows for improved object recognition, as well as quantitative analysis. As an indicator reaction, it is proposed to use the interaction of a commercial carbocyanine dye with 4-dimethylaminobenzaldehyde, which leads to a decrease in the intensity of fluorescence and a change in light absorption over time. Three fluoroquinolones (moxifloxacin, levofloxacin and ofloxacin) selectively alter the signal at concentrations ≥1 µm; other medicinal substances, including other fluoroquinolones, do not interfere. Ofloxacin was determined in human urine samples at different times after taking the drug. The possibility of using the same indicator reaction for object recognition is shown on the example of samples of apple juices, soil extracts and meat of varying degrees of freshness. Chemometrics methods, including linear discriminant analysis, were used to process the data. 15 apple juices were discriminated with 97% accuracy, 10 apple juices produced in 2022 and 2023 (94%), 10 soil samples (99%), and the possibility of determining the freshness of meat was shown using the example of five samples.

About the authors

V. S. Orekhov

a Lomonosov Moscow State University

Email: skoregy@gmail.com

Faculty of Chemistry

Russian Federation, Moscow

Е. V. Skorobogatov

Lomonosov Moscow State University

Author for correspondence.
Email: skoregy@gmail.com

Faculty of Chemistry

Russian Federation, Moscow

М. K. Beklemischev

Lomonosov Moscow State University

Email: skoregy@gmail.com

Faculty of Chemistry

Russian Federation, Moscow

References

  1. Curtman L.J., Rothberg P. Application of the “glow reaction” to the qualitative detection of the platinum metals // J. Am. Chem. Soc. 1911. V. 33. P. 718. https://doi.org/10.1021/ja02218a010
  2. Feigl F., Fränkel E. Beiträge zur analytischen verwertung von katalysen-reaktionen // Ber. Dtsch. Chem. Ges. 1932. V. 65. P. 539. https://doi.org/10.1002/cber.19320650407
  3. Szebellédy L., Bártfay M. Mangannaehweis mittels katalyse // Z. Anal. Chem. 1936. V. 106. P. 408. https://doi.org/10.1007/BF01376681
  4. Яцимирский К.Б. Кинетические методы анализа. М.: Химия. 1967. 200 с.
  5. Дружинин А.А. Кинетические методы анализа органических соединений // Журн. Всес. хим. о-ва им. Менделеева. 1970. Т. 15. С. 529.
  6. Crouch S.R., Scheeline A., Kirkor E.S. Kinetic determinations and some kinetic aspects of analytical chemistry // Anal. Chem. 2000. V. 72. P. 53. https://doi.org/10.1021/a1000004b
  7. Palleschi G. Kinetics in analytical chemistry // Anal. Bioanal. Chem. 2005. V. 381 P. 1321. https://doi.org/10.1007/s00216-005-3128-1
  8. Муштакова С.П. Теория действия и применение органических редокс-реагентов ряда дифениламина в спектрофотометрическом анализе: Дис. … докт. хим. наук. Саратов, 1987. 400 с.
  9. Беклемишев М.К. Новые индикаторные системы в кинетических методах анализа. Сорбционно-кинетический метод. Дис. … докт. хим. наук. М.: МГУ, 2011. 367 с.
  10. Шеховцова Т.Н. Ферментативные методы анализа: Определение эффекторов гидролаз и оксидоредуктаз. Дис. … докт. хим. наук. М.: МГУ, 1996. 335 c.
  11. Веселова И.А. Оптические сенсорные системы на основе пероксидазы для определения органических биологически активных веществ. Дис. … докт. хим. наук. М.: МГУ, 2018. 272 c.
  12. Dickinson T., White J., Kauer J., Walt D.R. A chemical-detecting system based on a cross-reactive optical sensor array // Nature. 1996. V. 382. P. 697. https://doi.org/10.1038/382697a0
  13. Anzenbacher P., Palacios M.A. Array-based sensors / Chemosensors: Principles, Strategies, and Applications. 1st Ed. / Eds. Wang B., Anslyn E.V. John Wiley & Sons, 2011. 544 p.
  14. Sádecká J., Tóthová J. Fluorescence spectroscopy and chemometrics in the food classification – a review // Czech. J. Food Sci. 2007. V. 25. P. 159. http://doi.org/10.17221/687-CJFS
  15. Askim J.R., Mahmoudia M., Suslick K.S. Optical sensor arrays for chemical sensing: The optoelectronic nose // Chem. Soc. Rev. 2013. V. 42. P. 8649. https://doi.org/10.1039/C3CS60179J
  16. Власов Ю.Г., Легин А.В., Рудницкая А.М. Электронный язык: химические сенсорные системы для анализа водных сред // Журн. общ. химии. 2008. Т. 78. С. 2532. https://doi.org/10.1134/S1070363208120335. (Vlasov Y.G., Legin A.V., Rudnitskaya A.M. Electronic tongue: Chemical sensor systems for analysis of aquatic media // Russ. J. Gen. Chem. 2008. V. 78. P. 2532. https://doi.org/10.1134/S1070363208120335)
  17. Yang J., Lu Y., Ao L., Wang F., Jing W., Zhang S., Liu Y. Colorimetric sensor array for proteins discrimination based on the tunable peroxidase-like activity of AuNPs-DNA conjugates // Sens. Actuators B. 2017. V. 245. P. 66. https://doi.org/10.1016/j.snb.2017.01.119
  18. Shariati-Ra M., Mozaffari Y. Water discrimination based on the kinetic variations of AgNP spectrum // RSC Adv. 2020. V. 10. P. 34459. http://doi.org/10.1039/D0RA06000C
  19. Liu L., Zhang L., Liang Y. A simple visual strategy for protein detection based on oxidase-like activity of silver nanoparticles // Food Anal. Methods. 2021. V. 14. P. 1852. https://doi.org/10.1007/s12161-021-02011-6
  20. Wang F., Na N., Ouyang J. Particle-in-a-frame gold nanomaterials with an interior nanogap-based sensor array for versatile analyte detection // Chem. Commun. 2021. V. 57. P. 4520. https://doi.org/10.1039/D1CC01094H
  21. Wang L., Hu Z., Wu S., Pan J., Xu X., Niu X. A peroxidase-mimicking Zr-based MOF colorimetric sensing array to quantify and discriminate phosphorylated proteins // Anal. Chim. Acta. 2020. V. 1121. P. 26. https://doi.org/10.1016/j.aca.2020.04.073
  22. Степанова И.А., Лебедева А.Н., Шик А.В., Скоробогатов Е.В., Беклемишев М.К. Распознавание и определение сульфаниламидов методом ближней ИК-флуориметрии по их влиянию на скорость каталитического окисления карбоцианинового красителя пероксидом водорода // Журн. аналит. химии. 2021. Т. 76. С. 1397. https://doi.org/10.1134/S1061934821120121. (Stepanova I.A., Lebedeva A.N., Shik A.V., Skorobogatov E.V., Beklemishev M.K. Recognition and determination of sulfonamides by near-IR fluorimetry using their effect on the rate of the catalytic oxidation of a carbocyanine dye by hydrogen peroxide // J. Anal. Chem. 2021. V. 76. P. 1397. https://doi.org/10.1134/S1061934821120121)
  23. Shik A.V., Stepanova I.A., Doroshenko I.A., Podrugina T.A., Beklemishev M.K. Carbocyanine-based fluorescent and colorimetric sensor array for the discrimination of medicinal compounds // Chemosensors. 2022. V. 10. P. 88. https://doi.org/10.3390/chemosensors10020088
  24. Shik A.V., Skorobogatov E.V., Bliznyuk U.A., Chernyaev A.P., Avdyukhina V.M., Borschegovskaya P.Y., et al. Estimation of doses absorbed by potato tubers under electron beam or X-ray irradiation using an optical fingerprinting strategy // Food Chem. 2023. V. 414. Article 135668. https://doi.org/10.1016/j.foodchem.2023.135668
  25. Shik A.V., Stepanova I.A., Doroshenko I.A., Podrugina T.A., Beklemishev M.K. Carbocyanine-based optical sensor array for the discrimination of proteins and rennet samples using hypochlorite oxidation // Sensors. 2023. V. 23. P. 4299. https://doi.org/10.3390/s23094299
  26. Pypin A.A., Shik A.V., Stepanova I.A., Doroshenko I.A., Podrugina T.A., Beklemishev M.K. A reaction-based optical fingerprinting strategy for the recognition of fat-soluble samples: Discrimination of motor oils // Sensors. 2023. V. 23. P. 7682. https://doi.org/10.3390/s23187682
  27. Shik A.V., Sobolev P.V., Zubritskaya Y.V., Baytler M.O., Stepanova I.A., Chernyaev A.P., et al. Rapid testing of irradiation dose in beef and potatoes by reaction-based optical sensing technique // J. Food Compos. Anal. 2024. V. 127. Article 105946. https://doi.org/10.1016/j.jfca.2023.105946
  28. Liu C., Qian Z., Chen Z. A dual channel fluorescence tongue for catechin recognition based on the MnO2 nanorods–Amplex Red–o-phenylenediamine reaction system // Anal. Methods. 2023. V. 15. P. 6476. https://doi.org/10.1039/D3AY01748F
  29. Jing W., Shi Q., Zheng M., Yang Y., Qiang S., Jia Z., et al. Smartphone-assisted nanozyme sensor array constructed based on reaction kinetics for the discrimination and identification of phenolic compounds // Anal. Chim. Acta. 2024. V. 1287. Article 342133. https://doi.org/10.1016/j.aca.2023.342133
  30. Pargari M., Marahel F., Goodajdar B.M. Kinetic spectrophotometric method and neural network model application for the quantitation of epinephrine by starch-capped AgNPs sensor in blood and urine // J. Anal. Chem. 2022. V. 77. P. 484. https://doi.org/10.1134/S1061934822040074
  31. Захаренкова С.А., Лебедева М.И., Лебедева А.Н., Дорошенко И.А., Кривцов Г.Г., Ежов А.А., Подругина Т.А., Беклемишев М.К. Средства визуализации доставки лекарственных веществ с использованием анионированных хитозанов / Сб. тезисов 5-й Российской конференции по медицинской химии с международным участием “МедХим-Россия 2021”. Волгоградский государственный медицинский университет, 2021. С. 432. https://doi.org/10.19163/MedChemRussia20212021-432
  32. XLSTAT-Pro. User’s manual. Addinsoft, 2003. P. 124. https://www.xlstat.com/en/solutions/features/discriminant-analysis-da (20.04.2024).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».