Determination of the mass fraction of milk fat in bottled milk by non-contact colorimetric method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A non-contact method for determining the mass fraction of milk fat in bottled milk by diffuse reflection of radiation from LEDs with radiation wavelengths of 365, 390, 850 and 880 nm using a smartphone and a special device is proposed. To register the analytical signal, the OnePlus 10 Pro smartphone, iPhone 14 with PhotoMetrix PRO®, ColorGrab, RGBer applications installed, and an IR spectrometer with Fourier transform for the near-infrared region (4000–10000 cm–1) were used. The experimental data were processed using specialized programs TQ Analyst, The Unscrambler X, XLSTAT. Simultaneous participation in the study of all LEDs with different wavelengths was found to contribute to obtaining results with the smallest relative deviation compared with the use of individual LEDs. A slight change in diffuse reflection from milk through polyethylene terephthalate-based packaging was revealed, which makes it possible to conduct the analysis in a non-contact way without opening the packaging. The milk fat content in the analyzed milk samples was estimated using a multidimensional data grading algorithm – partial least squares regression. The relative standard deviation of the analysis results did not exceed 0.08. The equivalence of the results obtained during the analysis was confirmed by using the method of IR spectroscopy with Fourier transform in the near spectral region

About the authors

V. G. Amelin

Russian State Center for Animal Feed and Drug Standardization and Quality; Vladimir State University

Author for correspondence.
Email: amelinvg@mail.ru
Russian Federation, Moscow; Vladimir

О. E. Emelyanov

Vladimir State University

Email: amelinvg@mail.ru
Russian Federation, Vladimir

Z. A. Ch. Shaoka

Russian State Center for Animal Feed and Drug Standardization and Quality; Vladimir State University

Email: amelinvg@mail.ru
Russian Federation, Moscow; Vladimir

A. V. Tratyakov

Russian State Center for Animal Feed and Drug Standardization and Quality

Email: amelinvg@mail.ru
Russian Federation, Moscow

References

  1. Karoui R., Baerdemaeker J. D. A review of the analytical methods coupled with chemometric tools for the determination of the quality and identity of dairy products // Food Chem. 2007. V. 102. P. 621. https://doi.org/10.1016/j.foodchem.2006.05.042
  2. Karoui R., Mazerolles G., Dufour E. Spectroscopic techniques coupled with chemometric tools for structure and texture determinations in dairy products: A review// Int. Dairy J. 2003. V. 13. P. 607. https://doi.org/10.1016/S0958-6946(03)00076-1
  3. Zhu X., Guo W., Liu D., Kang F. Determining the fat concentration of fresh raw cow milk using dielectric spectroscopy combined with chemometrics // Food Anal. Methods. 2018. V. 11. P. 1528. https://doi.org/10.1007/S12161-017-1140-7
  4. Soulat J., Andueza D., Graulet B., Girard C.L., Labonne C., Aït-Kaddour A., et al. Comparison of the potential abilities of three spectroscopy methods: Near-infrared, mid-infrared, and molecular fluorescence, to predict carotenoid, vitamin and fatty acid contents in cow milk // Foods. 2020. V. 9. P. 592. https://doi.org/10.3390/foods9050592
  5. Risoluti R., Gullifa G., Materazi S. Аssessing the quality of milk using a multicomponent analytical platform microNIR/chemometric // Front. Chem. 2020. V. 8. Аrticle 614718. https://doi.org/10.3389/fchem.2020.614718
  6. Bogomolov A., Dietrich S., Boldrini B., W. Kessler R. Quantitative determination of fat and total protein in milk based on visible light scatter // Food Chem. 2012. V. 134. P. 412. https://doi.org/10.1016/j.foodchem.2012.02.077
  7. Galyanin V., Surkova A., Bogomolov A. Selecting optimal wavelength intervals for an optical sensor: A case study of milk fat and total protein analysis in the region 400–1100 nm / Sens. Actuators B. 2015. V. 218. P. 97. https://doi.org/10.1016/j.snb.2015.03.101
  8. Kucheryavskiy S., Melenteva A., Bogomolov A. Determination of fat and total protein content in milk using conventional digital imaging // Talanta. 2014. V. 121. P. 144. https://doi.org/10.1016/j.talanta.2013.12.055
  9. Амелин В.Г., Шаока З.А.Ч., Третьяков А.В. Анализ молочной продукции: определение массовой доли молочного жира и выявление фальсификации смартфоном с приложением Photometrix PRO® // Журн. аналит. химии. 2024. Т. 79. № 1. С. 105. (Amelin V.G., Shogah Z.A.Ch., Tretyakov A.V. Аnalyzing dairy products: measuring milk fat mass fractionand detecting adulteration using the Photometrix PRO® smartphone app // J. Anal. Chem. 2024. V. 79. № 1. P. 50. https://doi.org/10.1134/S1061934824010039)
  10. Böck F.C., Helfer G.A., da Costa A.B., Dessuy M.B., Ferrao M.F. PhotoMetrix and colorimetric image analysis using smartphones // J. Chemom. 2020. V. 34. Article 12. https://doi.org/10.1002/cem.3251
  11. Helfer G.A., Magnus V.S., Böck F.C., Teichmann A., Ferrãoa M.F., da Costa A.B. PhotoMetrix: An application for univariate calibration and principal components analysis using colorimetry on mobile devices // J. Braz. Chem. Soc. 2017. V. 28. № 2. P. 328. https://doi.org/10.5935/0103-5053.20160182
  12. Rateni G., Dario P., Cavallo F. Smartphone-based food diagnostic technologies: A review // Sensors. 2017. V. 17. P. 1453. https://doi.org/10.3390/s17061453

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».