ХРОМАТОГРАФИЧЕСКИЕ МЕТОДЫ В ИДЕНТИФИКАЦИИ И ОПРЕДЕЛЕНИИ КОМПОНЕНТНОГО СОСТАВА И КАЧЕСТВА ВИН

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Представлен обзор литературы и нормативных документов по идентификации и определению органических соединений, формирующих компонентный состав и потребительские свойства вин. Отмечено, что возможности, информативность и универсальность современных хроматографических методов в сочетании с математическим обеспечением значительно повысили степень автоматизации и достоверность получения данных по идентификации и определению широкого спектракомпонентов в вине. Обсуждаются условия определения высоких и низких концентраций органических соединений, входящих в компонентный состав и обусловливающих качественные и региональные характеристики вин. Для решения задач идентификации и определения компонентов,ответственных за достоинства и недостатки винодельческой продукции, наибольшее применение находят различные методы газовой хроматографии и газовой хромато-масс-спектрометрии,обеспечивающие достоверное определение относительно летучих компонентов. Нелетучие компоненты вин определяют методами высокоэффективной жидкостной хроматографии с различными способами детектирования, а также высокоэффективного капиллярного электрофореза. Проанализированы основные подходы к установлению профиля и региональной принадлежности винпо компонентному составу, сочетающие возможности современных аналитических методов с методами статистического анализа, - множественный регрессионный анализ, общие линейные модели, многомерное шкалирование, ковариационный и канонический анализ, методы классификации и машинного обучения, нейронные сети. Продемонстрированы примеры их использованияна практике.

Об авторах

З. А. Темердашев

Кубанский государственный университет

Email: temza@kubsu.ru
факультет химии и высоких технологий Краснодар, Россия

А. Г. Абакумов

Кубанский государственный университет

факультет химии и высоких технологий Краснодар, Россия

О. Н. Шелудько

Северо-Кавказский федеральный научный центр садоводства, виноградарства, виноделия

Краснодар, Россия

Ю. Ф. Якуба

Северо-Кавказский федеральный научный центр садоводства, виноградарства, виноделия

Краснодар, Россия

Т. Г. Цюпко

Кубанский государственный университет

факультет химии и высоких технологий Краснодар, Россия

Список литературы

  1. Виноградарство и виноделие: информационное издание. М.: ФГБНУ “Росинформагротех”, 2022. 160 с.
  2. OIV-MA-INT-00-2023. Compendium of international methods of Wine and must analysis. https://www.oiv.int/sites/default/files/publication/2023-05/Compendium%20MA%20complet_EN.pdf (дата обращения 03.04.2024).
  3. ГОСТ Р 59570-2021. Продукция винодельческая. Идентификация компонентов в части определения природы этанола и других соединений физико-химического состава. М.: Стандартинформ, 2021. 106 с.
  4. Arvanitoyannis I.S. Managing wine quality (Book Chapter) / V. 1: Viticulture and Wine Quality. Amsterdam: Elsevier, 2021. P. 279. https://doi.org/10.1016/B978-0-08-102067-8.00001-4
  5. Temerdashev Z.A., Abakumov A.G., Kaunova A.A., Shelud’ko O.N., Tsyupko T.G. Assessment of quality and region of origin of wines // J. Anal. Chem. 2023. V. 78. № 12. P. 1724. https://doi.org/10.1134/S1061934823120171
  6. Esteki M., Simal-Gandara J., Shahsavari Z., Zandbaaf S., Dashtaki E., van Vander Heyden Y. A review on the application of chromatographic methods, coupled to chemometrics, for food authentication (chromatography-chemometrics in food authentication) // Food Control. 2018. V. 93. P. 165. https://doi.org/10.1016/j.foodcont.2018.06.015
  7. Sagratini G., Maggi F., Caprioli G., Cristalli G., Ricciutelli M., Torregiani E., Vittori S. Comparative study of aroma profile and phenolic content of Montepulciano monovarietal red wines from the Marches and Abruzzo regions of Italy using HSSPMEGC-MS and HPLC-MS // Food Chem. 2012. V. 132. P. 1592. https://doi.org/10.1016/j.foodchem.2011.11.108
  8. Kvasnicka F. Capillary electrophoresis in food authenticity // J. Sep. Sci. 2005. V. 28. P. 813. https://doi.org/10.1002/jssc.200500054
  9. Vaclavik L., Lacina O., Hajslova J., Zeigenbaum J. The use of high performance liquid chromatography quadrupole time-of-flight mass spectrometry coupled to advanced data mining and chemometric tools for discrimination and classification of red wines according to their variety // Anal. Chim. Acta. 2011. V. 685. № 1. P. 45. https://doi.org/10.1016/j.aca.2010.11.018
  10. https://www.oiv.int/ru/standards/international-code-of-oenological-practices/annexes/maximum-acceptable-limits/maximum-acceptable-limits (дата обращения 03.04.2024).
  11. Яшин Я.И., Яшин А.Я. Аналитическая хроматография. Методы, аппаратура, применение // Успехи химии. 2006. № 4. С. 366. (Yashin Ya.I., Yashin A.Ya. Analytical chromatography. Methods, instrumentation and applications // Russ. Chem. Rev. 2006. Т. 75. № 4. P. 329.) https://doi.org/10.1070/RC2006v075n04ABEH003607
  12. Gambetta J.M., Bastian S.E.P., Cozzolino D., Jeffery D.W. Factors influencing the aroma composition of chardonnay wines // J. Agric. Food Chem. 2014. V. 62. № 28. P. 6512. https://doi.org/10.1021/jf501945s
  13. Nicolini G., Larcher R., Pangrazzi P., Bontempo L. Changes in the contents of micro- and trace elements in wine due to winemaking treatments // Vitis. 2004. V. 43. P. 41.
  14. Longo R., Carew A., Sawyer S., Kemp B., Kerslake F. A review on the aroma composition of Vitis vinifera L. Pinot noir wines: origins and influencing factors // Crit. Rev. Food Sci. Nutr. 2021. V. 61. P. 1589. https://doi.org/10.1080/10408398.2022.2106181
  15. Jackson R.S. Wine Tasting: A Professional Handbook. 2nd Ed. San Diego, USA: Academic Press, 2009. 512 p.
  16. Joshi V.K., Attri B.L., Panesar P.S., Abrol G.S., Sharma S., Thakur A.D., Selli S., Kelebek H., Reddy L.V. Specific features of table wine production technology / Science and Technology of Fruit Wine Production. 2016. P. 295. https://doi.org/10.1016/B978-0-12-800850-8.00007-7
  17. Perestrelo R., Silva C., Câmara J.S. Madeira wine volatile profile. A platform to establish Madeira wine aroma descriptors // Molecules. 2019. V. 24. № 17. P. 3028. https://doi.org/10.3390/molecules24173028
  18. Cretin B.N., Dubourdieu D., Marchal A. Influence of ethanol content on sweetness and bitterness perception in dry wines // LWT. 2018. V. 87. P. 61. https://doi.org/10.1016/j.lwt.2017.08.075
  19. Río Segade S., Škrab D., Pezzuto E., Paissoni M.A., Giacosa S., Rolle L. Isomer composition of aroma compounds as a promising approach for wine characterization and differentiation: A review // Crit. Rev. Food Sci. Nutr. 2024. V. 64. № 2. P. 334. https://doi.org/10.1080/10408398.2022.2106181
  20. Pisarnitskii A.F. Formation of wine aroma: Tones and imperfections caused by minor components // Appl. Biochem. Microbiol. 2001. V. 37. P. 552. https://doi.org/10.1023/A:1012390731145
  21. Waterhouse A.L., Sacks G.L., David W., Jeffery D.W. Understanding Wine Chemistry. USA: John Wiley & Sons, 2016. P. 472.
  22. Marrufo-Curtido A., de-la-Fuente-Blanco A., Sáenz-Navajas M.-P., Ferreira V., Bueno M., Escudero A. Sensory relevance of strecker aldehydes in wines. Preliminary studies of its removal with different type of resins // Foods. 2021. V. 10. Article 1711. https://doi.org/10.3390/foods10081711
  23. Abalos D., Vejarano R., Morata A., González C., Suárez-Lepe J.A. The use of furfural as a metabolic inhibitor for reducing the alcohol content of model wines // Eur. Food Res. Technol. 2011. V. 232. P. 663. https://doi.org/10.1007/s00217-011-1433-9
  24. Савчук С.А. Контроль качества и идентификация подлинности коньяков хроматографическими методами // Партнеры и конкуренты. 2006. № 8. С. 18.
  25. Guymon J.F., Crowell E.A. The formation of acetoin and diacetyl during fermentation, and the levels found in wines // Am. J. Enol. Vitic. 1965. V. 16. P. 85. https://doi.org/10.5344/ajev.1965.16.2.85
  26. Belda I., Ruiz J., Esteban-Fernández A., Navascués E., Marquina D., Santos A., MorenoArribas M.V. Microbial contribution to wine aroma and its intended use for wine quality improvement // Molecules. 2017. V. 22. Article 189. https://doi.org/10.3390/molecules22020189
  27. Culleré L., Cacho J., Ferreira V. An assessment of the role played by some oxidation-related aldehydes in wine aroma // J. Agric. Food Chem. 2007. V. 55. P. 876. https://doi.org/10.1021/jf062432k
  28. Liu P.-T., Duan C.-Q., Yan G.-L. Comparing the effects of different unsaturated fatty acids on fermentation performance of saccharomyces cerevisiae and aroma compounds during red wine fermentation // Molecules. 2019. V. 24. P. 538. https://doi.org/10.3390/molecules24030538
  29. Jackson R.S. Chemical Constituents of Grapes and Wine. Wine Science. San Diego, USA: Academic Press, 2008. P. 270. https://doi.org/10.1016/b978-012373646-8.50009-3
  30. Baumes R. Wine Aroma Precursors. Wine Chemistry and Biochemistry. Amsterdam: Elsevier, 2009. P. 251.
  31. Wang Y., Wei Y., Pan Q. Advance in research on the accumulation and regulation of C13-norisoprenoid derivatives in grape berry and wine // Int. J. Fruit Sci. 2021. V. 38. P. 264. https://doi.org/10.7506/spkx1002-6630-20190729-397
  32. Perestrelo R., Silva C., Silva P., Câmara J.S. Unraveling Vitis vinifera L. grape maturity markers based on integration of terpenic pattern and chemometric methods // Microchem. J. 2018. V. 142. P. 367. https://doi.org/10.1016/j.microc.2018.07.017
  33. Baron M., Prusova B., Tomaskova L., Kumsta M., Sochor J. Terpene content of wine from the aromatic grape variety ’Irsai Oliver’ (Vitis vinifera L.) depends on maceration time // Open Life Sci. 2017. V. 12. P. 42. https://doi.org/10.1515/biol-2017-0005
  34. Zhang H., Pan Q. Advances in understanding the formation mechanism of terpenoids during winemaking and factors influencing it // Shipin Kexue/Food Sci. 2021. V. 42. P. 249. https://doi.org/10.7506/spkx1002-6630-20200802-024
  35. Milheiro J., Filipe-Ribeiro L., Vilela A., Cosme F., Nunes F.M. 4-Ethylphenol, 4-ethylguaiacol and 4ethylcatechol in red wines: Microbial formation, prevention, remediation and overview of analytical approaches // Crit. Rev. Food Sci. Nutr. 2019. V. 59. P. 1367. https://doi.org/10.1080/10408398.2017.1408563
  36. Sáenz-Navajas M.-P., Campo E., Avizcuri J.M., Valentin D., Fernández-Zurbano P., Ferreira V. Contribution of non-volatile and aroma fractions to in-mouth sensory properties of red wines: Wine reconstitution strategies and sensory sorting task // Anal. Chim. Acta. 2012. V. 732. P. 64. https://doi.org/10.1016/j.aca.2011.12.042
  37. Garrido J., Borges F. Wine and grape polyphenols — A chemical perspective // Food Res. Int. 2013. V. 54. P. 1844. https://doi.org/10.1016/j.foodres.2013.08.002
  38. Gutiérrez-Escobar R., Aliaño-González M.J., Cantos-Villar E. Wine polyphenol content and its influence on wine quality and properties // Molecules. 2021. V. 26. Article 718. https://doi.org/10.3390/molecules26030718
  39. De Villiers A., Vanhoenacker G., Majek P., Sandra P. Determination of anthocyanins in wine by direct injection liquid chromatography-diode array detection-mass spectrometry and classification of wines using discriminant analysis // J. Chromatogr. A. 2004. V. 1054. P. 195. https://doi.org/10.1016/j.chroma.2004.07.087
  40. Evers M.S., Roullier-Gall C., Morge C., Sparrow C., Gobert A., Alexandre H. Vitamins in wine: Which, what for, and how much? // Compr. Rev. Food Sci. Food Saf. 2021. V. 20. P. 2991. https://doi.org/10.1111/1541-4337.12743
  41. Pereira V., Pereira A.C., Pérez Trujillo J.P., Cacho J., Marques J. C. Amino acids and biogenic amines evolution during the estufagem of fortified wines // J. Chem. 2015. V. 2015. Article 494285. https://doi.org/10.1155/2015/494285
  42. Ribéreau-Gayon P., Glories Y., Maujean A., Dubourdieu D. The Chemistry of Wine: Stabilization and Treatments. Handbook of Enology. 2nd Ed. Chichester, England: John Wiley & Sons Ltd., 2006. 450 p.
  43. Guo Y.-Y., Yang Y.-P., Peng Q., Han Y. Biogenic amines in wine // Int. J. Food Sci. Technol. 2015. V. 50. P. 1523. https://doi.org/10.1111/ijfs.12833
  44. Tufariello M., Pati S., Palombi L., Grieco F., Losito I. Use of multivariate statistics in the processing of data on wine volatile compounds obtained by HS-SPME-GC-MS // Foods. 2022. V. 11. P. 910. https://doi.org/10.3390/foods11070910
  45. Sorrentinoa A., Boscainoa F., Cozzolinoa R., Volpea M.G., Ionatab E., Guerrieroc S., et al. Characterization of free volatile compounds in fiano wine produced by different selected autochthonous yeasts // Chem. Eng. Trans. 2013. V. 32. P. 1837. https://doi.org/10.3303/CET1332307
  46. Zhai H-Y., Li S-Y., Zhao X., Lan Y-B., Zhang X-K., Shi Y., Duan C-Q. The compositional characteristics, influencing factors, effects on wine quality and relevant analytical methods of wine polysaccharides: A review // Food Chem. 2023. V. 403. Article 134467. https://doi.org/10.1016/j.foodchem.2022.134467
  47. Sehovic D., Petravik V., Marik V. Glycerol and wine industry. Glycerol determination in grape must and wine // Chem. Ind. 2004. V. 53. P. 505.
  48. Lopez-Vazquez C., Orriols I., Perello M.C., de Revel G. Determination of aldehydes as pentafluorobenzyl derivatives in grape pomace distillates by HS-SPME-GC/MS // Food Chem. 2012. V. 130. P. 1127. https://doi.org/10.1016/j.foodchem.2011.07.140
  49. Wada K., Shibamoto T. Isolation and identification of volatile compounds from a wine using solid phase extraction, gas chromatography, and gas chromatography/mass spectrometry // J. Agric. Food Chem. 1997. V. 45. № 11. P. 4362. https://doi.org/1021/jf970157j
  50. Chatonnet P., Bonnet S., Boutou S., Labadie M.-D. Identification and Responsibility of 2,4,6tribromoanisole in musty, corked odors in wine // J. Agric. Food Chem. 2004. V. 52. № 5. P. 1255. https://doi.org/10.1021/jf030632f
  51. Villén J., Señoráns F.J., Reglero G., Herraiz M. Analysis of wine aroma by direct injection in gas chromatography without previous extraction // J. Agric. Food Chem. 1995. V. 43. P. 717. https://doi.org/10.1021/jf00051a029
  52. Kwan W.O., Kowalski B.R. Classification of wines by applying pattern recognition to chemical composition data // J. Food Sci. 1978. V. 43. № 4. P. 1320. https://doi.org/10.1111/j.1365-2621.1978.tb15299.x
  53. Setkova L., Risticevic S., Pawliszyn J. Rapid headspace solid-phase microextraction-gas chromatographic-time-of-flight mass spectrometric method for qualitative profiling of ice wine volatile fraction. I. Method development and optimization // J. Chromatogr. A. 2007. V. 1147. № 2. P. 213. https://doi.org/10.1016/j.chroma.2007.02.058
  54. Sun L., Zhang Z., Xia H., Zhang Q., Zhang J. Typical aroma of Merlot dry red wine from Eastern Foothill of Helan Mountain in Ningxia, China // Molecules. 2023. V. 28. № 15. Article 5682. https://doi.org/10.3390/molecules28155682
  55. Халафян А.А., Темердашев З.А., Абакумов А.Г., Якуба Ю. Ф. Хемометрическая оценка вклада металлов и летучих соединений в сенсорные свойства некоторых натуральных виноградных вин // Журн аналит. химии. 2021. Т. 76. № 8. C. 746. https://doi.org/10.31857/S0044450221080077
  56. Khalafyan A. A., Temerdashev Z.A., Abakumov A.G., Yakuba Y.F. Chemometric estimation of the contributions of metals and volatile compounds to the sensory properties of some natural grape wines // J. Anal. Chem. 2021. V. 76. № 8. P. 1016. https://doi.org/:10.1134/S1061934821080074.
  57. Torrens J., Riu-Aumatell M., López-Tamames E., Buxaderas S. Volatile compounds of red and white wines by headspace-solid-phase microextraction using different fibers // J. Chromatogr. Sci. 2004. V. 42. P. 122. https://doi.org/10.1093/chromsci/42.6.310
  58. Chin S.-T., Eyres G.T., Marriots P.J. Cumulative solid phase microextraction sampling for gas chromatography-olfactometry of Shiraz wine // J. Chromatogr. A. 2012. V. 1255. P. 221. https://doi.org/10.1016/j.chroma.2012.03.084
  59. Fernandes L., Relva A.M., Gomes da Silva M.D.R., Costa Freitas A.M. Different multidimensional chromatographic approaches applied to the study of wine malolactic fermentation // J. Chromatogr. A. 2003. V. 995. P. 161. https://doi.org/10.1016/S0021-9673(03)00517-X
  60. Francis I.L., Newton J.L. Determining wine aroma from compositional data // Aust. J. Grape Wine Res. 2005. V. 11. № 2. P. 114. https://doi.org/10.1111/j.1755-0238.2005.tb00283.x
  61. Angioni A., Pintore G.M., Caboni P. Determination of wine aroma compounds by degidration followed by GC/MS // J. AOAC Int. 2012. V. 95. № 3. P. 813. https://doi.org/10.5740/jaoacint.11-313
  62. Dawidowicz A.L., Dybowski M.P. Fast determination of α- and β-thujone in alcoholic beverages using solid-phase extraction and gas chromatography // Food Control. 2012. V. 25. P. 197. https://doi.org/10.1016/j.foodcont.2011.10.045
  63. Zapata J., Mateo-Vivaracho L., Lopez R., Ferreira V. Automated and quantitative headspace intube extraction for the accurate determination of highly volatile compounds from wines and beers // J. Chromatogr. A. 2012. V. 1230. P. 1. https://doi.org/10.1016/j.chroma.2012.01.037
  64. Welke J.E., Manfroi V., Zanus M., Lazarotto M., Zini C.A. Characterization of the volatile profile of Brazilian Merlot wines through comprehensive two dimensional gas chromatography timeofflight mass spectrometric detection // J. Chromatogr. A. 2012. V. 1226. P. 124. https://doi.org/10.1016/j.chroma.2012.01.002
  65. Qian X., Ling M., Sun Y., Han F., Shi Y., Duan C., Lan Y. Decoding the aroma characteristics of icewine by partial least-squares regression, aroma reconstitution, and omission studies // Food Chemi. 2024. V. 440. Article 138226. https://doi.org/10.1016/j.foodchem.2023.138226
  66. Panighel A., Flamini R. Applications of solid-phase microextraction and gas chromatography/mass spectrometry (SPME-GC/MS) in the study of grape and wine volatile compounds // Molecules. 2014. V. 19. № 12. P. 21291. https://doi.org/10.3390/molecules191221291
  67. Marinaki M., Sampsonidis I., Lioupi A., Arapitsas P., Thomaidis N., Zinoviadou K., Theodoridis G. Development of two-level design of experiments for the optimization of a HS-SPME-GCMS method to study Greek monovarietal PDO and PGI wines // Talanta. 2023. V. 253. Article 123987. https://doi.org/10.1016/j.talanta.2022.123987
  68. Ngxangxa S., Tredoux A.G.J., de Villiers A. Comprehensive two-dimensional gas chromatographyhigh resolution mass spectrometry for the detailed qualitative analysis of old vine Chenin blanc wine volatiles and comparison with young vine Chenin blanc wines // J. Chromatogr. Open. 2024. V. 5. Article 100116. https://doi.org/10.1016/j.jcoa.2024.100116
  69. Weldegergis B.T., Crouch A.M., Górecki T., de Villiers A. Solid phase extraction in combination with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry for the detailed investigation of volatiles in South African red wines // Anal. Chim. Acta. 2011. V. 701. № 1. P. 98. https://doi.org/10.1016/j.aca.2011.06.006
  70. Ubeda C., Cortejosa D., Morales M.L., Callejón R.M., Ríos-Reina R. Determination of volatile compounds for the differentiation of PDO fortified wines with different ageing methods as a tool for controlling their authenticity // Int. Food Res. 2023. V. 173. Article 113320. https://doi.org/10.1016/j.foodres.2023.113320
  71. Dumitriu G.-D., Sánchez-Suárez F., Peinado R.A., Cotea V.V., de Lerma N.L., Gabur I., Simioniuc V. Metabolomics of red wines aged traditionally, with chips or staves // Foods. 2024. V. 13. № 2. P. 196. https://doi.org/10.3390/foods13020196
  72. Slaghenaufi D., Peruch E., De Cosmi M., Nouvelet L., Ugliano M. Volatile and phenolic composition of monovarietal red wines of Valpolicella appellations // Oeno One. 2021. V. 55. № 1. P. 279. https://doi.org/10.20870/OENO-ONE.2021.55.1.3865
  73. Welke J.E., Hernandes K.C., Nicolli K.P., Barbará J.A., Biasoto A.C.T., Zini C.A. Role of gas chromatography and olfactometry to understand the wine aroma: Achievements denoted by multidimensional analysis // J. Sep. Sci. 2021. V. 44. № 1. P. 135. https://doi.org/10.1002/jssc.202000813
  74. Pickering G.J., Blake A., Kotseridi Y. Effect of closure, packaging and storage conditions on impact odorants of wine // Czech. J. Food Sci. 2009. V. 27. P. 62. https://doi.org/10.17221/1104-cjfs
  75. Perini M., Strojnik L., Paolini M., Camin F. Gas chromatography combustion isotope ratio mass spectrometry for improving the detection of authenticity of grape must // J. Agric. Food Chem. 2020. V. 68. № 11. P. 3322. https://doi.org/10.1021/acs.jafc.9b05952
  76. Вина и алкогольные напитки. Директивы и регламенты Европейского Союза. М.: Издательство стандартов, 2000. 616 с.
  77. Radovanovic A., Jovančićević B., Arsic B., Bukarica L. Application of non-supervised pattern recognition techniques to classify Cabernet Sauvignon wines from the Balkan region based on individual phenolic compounds // J. Food Compos. Anal. 2016. V. 49. P. 42. https://doi.org/10.1016/j.jfca.2016.04.001
  78. Lisov N., Čakar U., Milenković D., Čebela M., Vuković G., Despotović S., Petrović A. The influence of Cabernet Sauvignon ripeness, healthy state and maceration time on wine and fermented pomace phenolic profile // Fermentation. 2023. V. 9. № 7. P. 695. https://doi.org/10.3390/fermentation9070695
  79. Kyraleou M., Kallithraka S., Gkanidi E., Koundouras S., Mannion D.T., Kilcawley K.N. Discrimination of five Greek red grape varieties according to the anthocyanin and proanthocyanidin profiles of their skins and seeds // J. Food Compos. Anal. 2020. V. 92. Article 103547. https://doi.org/10.1016/j.jfca.2020.103547
  80. Palade L.M., Popa M.E. Polyphenol fingerprinting approaches in wine traceability and authenticity: Assessment and implications of red wines // Beverages. 2018. V. 4. № 4. P. 75. https://doi.org/10.3390/beverages4040075
  81. Oliva E., Mir-Cerdà A., Sergi M., Sentellas S., Saurina J. Characterization of sparkling wine based on polyphenolic profiling by liquid chromatography coupled to mass spectrometry // Fermentation. 2023. V. 9. № 3. P. 223. https://doi.org/10.3390/fermentation9030223
  82. Mir-Cerdà A., Saurina J., Sentellas S. Bioactive amines in wines. The assessment of quality descriptors by flow injection analysis with tandem mass spectrometry // Molecules. 2022. V. 27. № 24. Article 8690. https://doi.org/10.3390/molecules27248690
  83. Perestrelo R., Lu Y., Santos S.A.O., Silvestre A.J.D., Neto C.P., Camara J.S., Rocha S.M. Phenolic profile of Sercial and Tinta Negra Vitis vinifera L. grape skins by HPLC–DAD–ESIMSn: Novel phenolic compounds in Vitis vinifera L. grape // Food Chem. 2012. V. 135. P. 94. https://doi.org/10.1016/j.foodchem.2012.04.102
  84. Eremia S.A.V., Albu C., Radu G.L., Ion M. Different extraction approaches for the analysis of melatonin from Cabernet Sauvignon and Feteasca Neagra wines using a validated HPLCFL method // Molecules. 2023. V. 28. № 6. Article 2768. https://doi.org/10.3390/molecules28062768
  85. Perini M., Pianezze S., Guardini K., Allari L., Larcher R. Authentication and geographical characterization of italian grape musts through glucose and fructose carbon isotopic ratios determined by LC-IRMS // Molecules. 2023. V. 28. Article 1411. https://doi.org/10.3390/molecules28031411
  86. Karaaslan-Ayhan N., Yaman M. Determination of anthocyanins and anthocyanidins in the wild grape (Vitis sylvestris Gmelin) by high-performance liquid chromatography-diode array detection (HPLC-DAD) // Instrum. Sci. Technol. 2021. V. 50. № 1. P. 57. https://doi.org/10.1080/10739149.2021.1954532
  87. Figueiredo-González M., Simal-Gándara J., Boso S., Martínez M.C., Santiago J.L., CanchoGrande B. Anthocyanins and flavonols berries from Vitis vinifera L. cv. Brancellao separately collected from two different positions within the cluster // Food Chem. 2012. V. 135. № 1. P. 47. https://doi.org/10.1016/j.foodchem.2012.04.054
  88. Kőrösi L., Molnár S., Teszlák P., Dörnyei Á., Maul E., Töpfer R., Marosvölgyi T., Szabó É., Röckel F. Comparative study on grape berry anthocyanins of various teinturier varieties // Foods. 2022. V. 11. Article 3668. https://doi.org/10.3390/foods11223668
  89. Kalogiouri N.P., Karadimou C., Avgidou M.S., Petsa E., Papadakis E.N., Theocharis S., et al. An optimized HPLC-DAD methodology for the determination of anthocyanins in grape skins of red Greek winegrape cultivars (Vitis vinifera L.) // Molecules. 2022. V. 27. № 20. Article 7107. https://doi.org/10.3390/molecules27207107
  90. Meng J.F., Fang Y-L., Qin M.-Y., Zhuang X.F., Zhang Z.-W. Varietal differences among the phenolic profiles and antioxidant properties of four cultural of spine grape (Vitis Vinifera Foex) in Chongyi County (Chine) // Food Chem. 2012. V. 134. P. 2049. https://doi.org/10.1016/j.foodchem.2012.04.005
  91. Uzhel A.S., Borodina A.N., Gorbovskaya A.V., Shpigun O.A., Zatirakha A.V. Determination of full organic acid profiles in fruit juices and alcoholic beverages using novel chemically derivatized hyperbranched anion exchanger // J. Food Compos. Anal. 2021. V. 95. Article 103674. https://doi.org/10.1016/j.jfca.2020.103674
  92. Rustioni L., Bedgood D.R., Failla O., Prenzler P.D., Robards K. Copigmentation and anti-copigmentation in grape extracts studied by spectrophotometry and post-column-reaction HPLC // Food Chem. 2012. V. 132. P. 2194. https://doi.org/10.1016/j.foodchem.2011.12.058
  93. Esti M.B., Liburdi K., Acciaro G. Monitoring of ochratoxin A fate during alcoholic fermentation of wine-must // Food Control. 2012. V. 127. P. 53. https://doi.org/10.1016/j.foodcont.2012.02.030
  94. Robles A., Fabjanowicz M., Chmiel T., PłotkaWasylka J. Determination and identification of organic acids in wine samples. Problems and challenges // Trends Anal. Chem. 2019. V. 120. Article 115630. https://doi.org/10.1016/j.trac.2019.115630
  95. Amelin V.G., Podgolzin I.V., Tretiakov A.V. Determination of organic acids in alcoholic and nonalcoholic beverages by reversed phase high performance liquid chromatography // J. Anal. Chem. 2012. V. 67. P. 262. https://doi.org/10.1134/S1061934812010030
  96. Lima M.M., Choy Y.Y., Tran J., Lydon M., Runnebaum R.C. Organic acids characterization: Wines of Pinot Noir and juices of ‘Bordeaux grape varieties’ // J. Food Compos. Anal. 2022. V. 114. Article 104745. https://doi.org/10.1016/j.jfca.2022.104745
  97. Perestrelo R., Bordiga M., Locatelli M., Silva C., Câmara J.S. Polyphenols, biogenic amines and amino acids patterns in Verdelho wines according to vintage // Microchem. J. 2019. V. 153. Article 104383. https://doi.org/10.1016/j.microc.2019.104383
  98. Lola D., Miliordos D.E., Goulioti E., Haroutounian S.A., Kotseridis Y. Assessment of the volatile and non-volatile profile of Savatiano PGI wines as affected by various terroirs in Attica, Greece // Int. Food Res. 2023. V. 174. Article 113649. https://doi.org/10.1016/j.foodres.2023.113649
  99. Valente I., Santo C.M., Goncalvez L.M., Rodriguez J.A., Barros A.A. Application of gasdiffusion microextraction for high performance liquid chromatographic analysis of aliphatic amines in fermented beverages // Anal. Methods. 2012. V. 4. P. 2569. https://doi.org/10.1039/C2AY25272D
  100. Bach B., Le Quere S., Vuchot P., Grinbaum M., Barnavon L. Validation of a method for the analysis of biogenic amines: Histamine instability during wine sample storage // Anal. Chim. Acta. 2012. V. 732. P. 114. https://doi.org/10.1016/j.aca.2011.12.036
  101. Quiros M., Gonzalez R., Morales P. A simple method for total quantification of manno-protein content on real wine samples // Food Chem. 2012. V. 134. P. 1205. https://doi.org/10.1016/j.foodchem.2012.02.168
  102. Antoniolli A., Fontana A.R., Piccoli P., Bottini R. Characterization of polyphenols and evaluation of antioxidant capacity in grape pomace of the cv. Malbec // Food Chem. 2015. V. 178. № 1. P. 172. https://doi.org/10.1016/j.foodchem.2015.01.082
  103. Захарова А.М., Карцова Л.А., Гринштейн И.Л. Определение органических кислот, углеводов и подсластителей в пищевых продуктах и биологически активных добавках методом высокоэффективной жидкостной хроматографии // Аналитика и контроль. 2013. Т. 17. № 2. С. 204.
  104. Navarro-Abril A., Saurina J., Sentellas S. Simultaneous determination of amino acids and biogenic amines by liquid chromatography coupled to mass spectrometry for assessing wine quality // Beverages. 2022. V. 8. № 4. P. 69. https://doi.org/10.3390/beverages8040069
  105. Sun N., Zhao L., Liu A., Su L., Shi K., Zhao H., Liu S. Role of amino acids in flavor profiles and foam characteristics of sparkling wines during aging // J. Food Compos. Anal. 2024. V. 126. Article 105903. https://doi.org/10.1016/j.jfca.2023.105903
  106. Velasco J., Núñez O. The role of capillary electrophoresis in the characterization and determination of polyphenols and phenolic compounds in food / Advances in Chemistry Research. Nova Science Publishers Inc., 2021. V. 68. P. 1.
  107. Gomez F.J.V., Monasterio R.P., Vargas V.C.S., Silva M.F. Analytical characterization of wine and its precursors by capillary electrophoresis // Electrophoresis. 2012. V. 33. № 15. P. 2240. https://doi.org/10.1002/elps.201100595
  108. Якуба Ю.Ф. Прямое определение основных аминокислот вина // Заводск. лаборатория. Диагностика материалов. 2010. Т. 76. № 4. С. 12.
  109. Mandrioli R., Morganti E., Mercolini L., Kenndler E., Raggi M.A. Fast analysis of amino acids in wine by capillary electrophoresis with laserinduced fluorescence detection // Electrophoresis. 2011. V. 32. P. 2809. https://doi.org/10.1002/elps.201100112
  110. Khalafyan A., Temerdashev Z., Abakumov A., Yakuba Y., Sheludko O., Kaunova A. Multidimensional analysis of the interaction of volatile compounds and amino acids in the formation of sensory properties of natural wine // Heliyon. 2023. V. 9. № 1. Article e12814. https://doi.org/10.1016/j.heliyon.2023.e12814
  111. Адамсон В.Г., Комарова Н.В. Способ определения органических кислот в безалкогольных и алкогольных напитках методом капиллярного электрофореза. Патент РФ № 2350938. Заявка 2007132860 от 27.03.2009, опубл. 27.03.2009.
  112. Rodríguez-Delgado M.A., Malovaná S.,Montelongo F.J., Cifuente A. Fast analysis of proteins in wines by capillary gel electrophoresis // Eur. Food Res. Technol. 2002. V. 214. P. 536. https://doi.org/10.1007/s00217-002-0514-1
  113. Ashmore P.L., Valdez F., Harbertson J.F., Boulton R.B., Collins T.S. Rapid determination of free sulfur dioxide in wine and cider by capillary electrophoresis // J. Chromatogr. A. 2023. V. 1695. Article 463936. https://doi.org/10.1016/j.chroma.2023.463936
  114. Ruiz-Jimеnez J., Luque de Castro M.D. On-line pervaporation-capillary electrophoresis for the determination of flying acidity and free sulfur dioxide in wines // Electrophoresis. 2005. V. 26. P. 2231. https://doi.org/10.1002/elps.200410398
  115. Pazourek J., Gonzales G., Revilla A.L., Havel J. Separation of polyphenols in Canary Islands wines by capillary electrophoresis without preconcentration // J. Chromatogr. A. 2000. V. 874. P. 111. https://doi.org/10.1016/S0021-9673(99)01348-5
  116. Şanli S., Şanli N., Ozkan S.A., Lunte C. Development and validation of a green capillary electrophoretic method for determination of polyphenolic compounds in red wine samples // Chromatographia. 2016. V. 79. P. 1351. https://doi.org/10.1007/s10337-016-3147-4
  117. Gomez F.J.V., Silva M.F. Microchip electrophoresis for wine analysis // Anal. Bioanal. Chem. 2016. V. 408. P. 8643. https://doi.org/10.1007/s00216-016-9841-0
  118. Rapeanu G., Vicol C., Bichescu C. Possibilities to assess the wines authenticity // Innov. Rom. Food Biotechnol. 2009. V. 5. P. 1.
  119. ГОСТ Р 55242-2012. Вина с защищенным географическим указанием и вина с защищенным наименованием места происхождения товара. Общие технические условия. М: Стандартинформ, 2013. 7 с.
  120. Temerdashev Z., Abakumov A., Khalafyan A., Bolshov M., Lukyanov A., Vasilyev A., Gipich E. The influence of the soil profile on the formation of the elemental image of grapes and wine of the Cabernet Sauvignon variety // Molecules. 2024. V. 29. Article 2251. https://doi.org/10.3390/molecules29102251
  121. Temerdashev Z.A., Abakumov A.G., Khalafyan A.A., Ageeva N.M. Correlations between the elemental composition of grapes, soils of the viticultural area and wine // Ind. Lab. Diagn. Mater. 2021. V. 87. P. 11. https://doi.org/10.26896/1028-6861-2021-87-11-11-18
  122. Han G., Dai L., Sun Y., Li C., Ruan S., Li J., Xu Y. Determination of the age of dry red wine by multivariate techniques using color parameters and pigments // Food Control. 2021. V. 129. Article 108253. https://doi.org/10.1016/j.foodcont.2021.108253
  123. Temerdashev Z., Abakumov A., Bolshov M., Khalafyan A., Ageeva N., Vasilyev A., Ramazanov A. Instrumental assessment of the formation of the elemental composition of wines with various bentonite clays // Microchem. J. 2022. V. 175. Article 107145. https://doi.org/10.1016/j.microc.2021.107145
  124. Geană E.-I., Teodora Ciucure C., Artem V., Apetrei C. Wine varietal discrimination and classification using a voltammetric sensor array based on modified screen-printed electrodes in conjunction with chemometric analysis // Microchem. J. 2020. V. 159. Article 105451. https://doi.org/10.1016/j.microc.2020.105451
  125. Hao X., Gao F., Wu H., Song Y., Zhang L., Li H., Wang H. From soil to grape and wine: Geographical variations in elemental profiles in different Chinese regions // Foods. 2021. V. 10. Article 3108. https://doi.org/10.3390/foods10123108
  126. Temerdashev Z., Bolshov M., Abakumov A., Khalafyan A., Kaunova A., Vasilyev A., Sheludko O., Ramazanov A. Can rare earth elements be considered as markers of the varietal and geographical origin of wines? // Molecules. 2023. V. 28. Article 4319. https://doi.org/10.3390/molecules28114319
  127. Baker A.K., Ross C.F. Sensory evaluation of impact of wine matrix on red wine finish: A preliminary study // J. Sens. Stud. 2014. V. 29. P. 139. https://doi.org/10.1111/joss.12089
  128. Cordente A.G., Espinase Nandorfy D., Solomon M., Schulkin A., Kolouchova R., Francis I.L., Schmidt S.A. Aromatic higher alcohols in wine: Implication on aroma and palate attributes during Chardonnay aging // Molecules. 2021. V. 26. Article 4979. https://doi.org/10.3390/molecules26164979
  129. Халафян А.А., Темердашев З.А., Абакумов А.Г., Якуба Ю.Ф. Хемометрический (геометрический) подход к ранжированию сухих белых вин по результатам сенсорной оценки их качества // Журн аналит. химии. 2021. Т. 76. № 8. С. 736. https://doi.org/10.31857/S0044450221080065
  130. Khalafyan A.A., Temerdashev Z.A., Abakumov A.G., Yakuba Y.F. A chemometric (geometric) approach to ranking dry white wines by the results of sensory evaluation of their quality // J. Anal. Chem. 2021. V. 76. № 8. P. 1007. https://doi.org/10.1134/S1061934821080062
  131. Rapp A. Volatile flavour of wine: Correlation between instrumental analysis and sensory perception // Nahrung – Food. 1998. V. 42. № 6. P. 351. https://doi.org/10.1002/(sici)1521-3803(199812)42:06<351::aid-food351>3.3.co;2-u
  132. Vilanova M., Escudero A., Grana M., Cacho J. Volatile composition and sensory properties of Vitis vinifera red cultivars from North West Spain: Correlation between sensory and instrumental analysis // Anal. Chim. Acta. 2012. V. 720. P. 104. https://doi.org/10.1016/j.aca.2012.01.026
  133. Spence C. What is the relationship between the presence of volatile organic compounds in food and drink products and multisensory flavour perception? // Foods. 2021. V. 10. Article 1570. https://doi.org/10.3390/foods10071570
  134. López R., Aznar M., Cacho J., Ferreira V. Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection // J. Chromatogr. A. 2002. V. 966. P. 167. https://doi.org/10.1016/s0021-9673(02)00696-9
  135. González-Barreiro C., Rial-Otero R., CanchoGrande B., Simal-Gándara J. Wine aroma compounds in grapes // Crit. Rev. Food Sci. Nutr. 2015. V. 55. P. 202. https://doi.org/10.1080/10408398.2011.650336
  136. García-Jares C.M., García-Martin M.S., CarroMariño N., Cela-Torrijos R. GC-MS identification of volatile components of Galician (Northwestern Spain) white wines. Application to differentiate Rías Baixas wines from wines produced in nearby geographical regions // J. Sci. Food Agric. 1995. V. 69. P. 175. https://doi.org/10.1002/jsfa.2740690207
  137. Versari A., Laurie V.F., Ricci A., Laghi L., Parpinello G.P. Progress in authentication, typification and traceability of grapes and wines by chemometric approaches // Food Res. Int. 2014. V. 60. P. 2. https://doi.org/10.1016/j.foodres.2014.02.007
  138. Tzachristas A., Pasvanka K., Calokerinos A., Proestos C. Polyphenols: Natural antioxidants to be used as a quality tool in wine authenticity // Appl. Sci. 2020. V. 10. P. 5908. https://doi.org/10.3390/app10175908
  139. Langen J., Wegmann-Herr P., Schmarr H.-G. Quantitative determination of α-ionone, βionone, and β-damascenone and enantiodifferentiation of α-ionone in wine for authenticity control using multidimensional gas chromatography with tandem mass spectrometric detection // Anal. Bioanal. Chem. 2016. V. 408. P. 6483. https://doi.org/10.1007/s00216-016-9767-6
  140. Kapusta I., Cebulak T., Oszmiański J. The anthocyanins profile of red grape cultivars growing in south-east Poland (Subcarpathia region) // J. Food Meas. Charact. 2017. V. 11. P. 1863. https://doi.org/10.1007/s11694-017-9568-4I
  141. Gupta Y. Selection of important features and predicting wine quality using machine learning techniques // Procedia Comput. Sci. 2018. V. 125. P. 305. https://doi.org/10.1016/j.procs.2017.12.041
  142. Халафян А.А., Темердашев З.А., Каунова А.А., Абакумов А.Г., Титаренко В.О., Акиньшина В.А., Ивановец Е.А. Установление сортовой и региональной принадлежности белых вин с использованием нейросетевых технологий // Журн. аналит. химии. 2019. Т. 74. № 6. С. 464. https://doi.org/10.1134/S0044450219060057
  143. Khalafyan A.A., Temerdashev Z.A., Kaunova A.A., Abakumov A.G., Titarenko V.O., Akin’shina V.A., Ivanovets E.A. Determination of the wine variety and geographical origin of white wines using neural network technologies // J. Anal. Chem. 2019. V. 74. № 6. P. 617. https://doi.org/10.1134/S1061934819060042
  144. Geana E.I., Marinescu A., Iordache A.M., Sandru C., Ionete R.E., Bala C. Differentiation of Romanian wines on geographical origin and wine variety by elemental composition and phenolic components // Food Anal. Methods. 2014. V. 7. P. 2064. https://doi.org/10.1007/s12161-014-9846-2
  145. Arozarena I., Casp A., Marin R., Navarro M. Differentiation of some Spanish wines according to variety and region based on their anthocyanin composition // Eur. Food Res. Technol. 2000. V. 212. P. 108. https://doi.org/10.1007/s002170000212
  146. Mattivi F., Guzzon R., Vrhovsek U., Stefanini A.M., Velasco R. Metabolite profiling of grape: Flavonols and anthocyanins // J. Agric. Food Chem. 2006. V. 54. P. 7692. https://doi.org/10.1021/jf061538c
  147. González-Neves G., Franco J., Barreiro L., Gil G., Moutounet M., Carbonneau A. Varietal differentiation of Tannat, Cabernet-Sauvignon and Merlot grapes and wines according to their anthocyanic composition // Eur. Food Res. Technol. 2007. V. 225. P. 111. https://doi.org/10.1007/s00217-006-0388-8
  148. Kallithraka S., Mamalos A., Makris D.P. Differentiation of young red wines based on chemo-metrics of minor polyphenolic constituents // J. Agric. Food Chem. 2007. V. 55. P. 3233. https://doi.org/10.1021/jf070114v
  149. Jaitz L., Siegl K., Eder R., Rak G., Abranko L., Koellensperger G., Hann S. LC–MS/MS analysis of phenols for classification of red wine according to geographic origin, grape variety and vintage // Food Chem. 2010. V. 122. P. 366. https://doi.org/10.1016/j.foodchem.2010.02.053
  150. Vergara C., Von Baer D., Mardones C., Gutiérrez L., Hermosín-Gutiérrez I., Castillo-Muñoz N. Flavonol profiles for varietal differentiation between carménère and merlot wines produced in Chile: HPLC and chemometric analysis // J. Chil. Chem. Soc. 2011. V. 56. P. 827. https://doi.org/10.4067/S0717-97072011000400001
  151. Serrano-Lourido D., Saurina J., HernándezCassou S., Checa A. Classification and characterization of Spanish red wines according to their appellation of origin based on chromatographic profiles and chemometric data analysis // Food Chem. 2012. V. 135. P. 1425. https://doi.org/10.1016/j.foodchem.2012.06.010
  152. Pisano P.L., Silva M.F., Olivieri A.C. Anthocyanins as markers for the classification of Argentinean wines according to botanical and geographical origin. Chemometric modeling of liquid chromatography–mass spectrometry data // Food Chem. 2015. V. 175. P. 174. https://doi.org/10.1016/j.foodchem.2014.11.124
  153. Sen I., Tokatli F. Authenticity of wines made with economically important grape varieties grown in Anatolia by their phenolic profiles // Food Control. 2014. V. 46. P. 446. https://doi.org/10.1016/j.foodcont.2014.06.015
  154. Delcambre A., Saucier C. High-throughput OEnomics: Shotgun polyphenomics of wines // Anal. Chem. 2013. V. 85. P. 9736. https://doi.org/10.1021/ac4021402
  155. Rosillo L., Salinas M.R., Garijo J., Alonso G.L. Study of the volatiles in grapes by dynamic headspace analysis, application to the differentiation of some Vitis vinifera varieties // J. Chromatogr. A. 1999. V. 847. P. 155. https://doi.org/10.1016/S0021-9673(99)00036-9
  156. Nasi A., Ferranti P., Amato S., Chianese L. Identification of free and bound volatile compounds as typicalness and authenticity markers of nonaromatic grapes and wines through a combined use of mass spectrometric techniques // Food Chem. 2008. V. 110. P. 762. https://doi.org/10.1016/j.foodchem.2008.03.001
  157. Weldegergis B.T., De Villiers A., Crouch A.M. Chemometric investigation of the volatile content of young South African wines // Food Chem. 2011. V. 128. P. 1100. https://doi.org/10.1016/j.foodchem.2010.09.100
  158. Welke J.E., Manfroi V., Zanus M., Lazzarotto M., Zini C.A. Differentiation of wines according to grape variety using multivariate analysis of comprehensive two-dimensional gas chromatography with time of flight mass spectrometric detection data // Food Chem. 2013. V. 141. P. 3897. https://doi.org/10.1016/j.foodchem.2013.06.100
  159. Kružlicová D., Mocak J., Balla B., Petka J., Farková M., Havel J. Classification of Slovak white wines using artificial neural networks and discriminant techniques // Food Chem. 2009. V. 112. P. 1046. https://doi.org/10.1016/j.foodchem.2008.06.047

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».