Automated Liquid–Liquid Microextraction of Fluoroquinolones for Their Subsequent Chromatographic Determination

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

An automated method is developed for dispersive liquid–liquid microextraction of fluoroquinolone antibiotics based on the principles of stepwise injection analysis. The method involves the dispersion of the extractant by the gas phase, formed in situ in the extraction chamber of the flow analyzer. A deep eutectic solvent based on a terpenoid and a mixture of hydrophilic and hydrophobic carboxylic acids is studied as an extractant for the isolation and preconcentration of fluoroquinolones, and a possibility of its use is substantiated. Hydrophilic carboxylic acid in the composition of the extractant acts as a proton donor for the formation of a carbon dioxide dispersant in the presence of sodium carbonate dissolved in the aqueous phase. A possibility of combining the developed method with high-performance liquid chromatography with fluorimetric detection is shown on an example of the determination of fluoroquinolones in wastewaters. The limits of detection (3σ) for ofloxacin, fleroxacin, and norfloxacin were 0.3 µg/L.

Авторлар туралы

I. Timofeeva

Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, St. Petersburg State University

Email: i.i.timofeeva@spbu.ru
199034, St. Petersburg, Russia

K. Barbayanov

Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, St. Petersburg State University

Email: i.i.timofeeva@spbu.ru
199034, St. Petersburg, Russia

A. Bulatov

Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, St. Petersburg State University

Хат алмасуға жауапты Автор.
Email: i.i.timofeeva@spbu.ru
199034, St. Petersburg, Russia

Әдебиет тізімі

  1. Крылов В.А., Крылов А.В., Мосягин П.В., Маткивская Ю.О. Жидкофазное микроэкстракционное концентрирование примесей // Журн. аналит. химии. 2011. Т. 66. С. 341.
  2. Дмитриенко С.Г., Апяри В.В., Толмачева В.В., Горбунова М.В. Жидкостная экстракция органических соединений в каплю экстрагента. Обзор обзоров // Журн. аналит. химии. 2021. Т. 76. № 8. С. 675. https://doi.org/10.31857/S0044450221080041
  3. Дмитриенко С.Г., Апяри В.В., Толмачева В.В., Горбунова М.В. Дисперсионная жидкостно-жидкостная микроэкстракция органических соединений. Обзор обзоров // Журн. аналит. химии. 2020. Т. 75. № 10. С. 867. https://doi.org/10.31857/S0044450220100059
  4. Золотов Ю.А. Проточный химический анализ: монография. М.: Наука, 2014. 428 с.
  5. Цизин Г.И., Статкус М.А., Золотов Ю.А. Сорбционное и экстракционное концентрирование микрокомпонентов в проточных системах анализа // Журн. аналит. химии. 2015. Т. 70. № 11. С. 1123.
  6. Vakh C., Falkova M., Timofeeva I., Moskvin A., Moskvin L., Bulatov A. Flow analysis: A novel approach for classification // Crit. Rev. Anal. Chem. 2016. V. 46 P. 374. https://doi.org/10.1080/10408347.2015.1087301
  7. Вах К.С., Тимофеева И.И., Булатов А.В. Автоматизация микроэкстракционного концентрирования на принципах циклического инжекционного анализа // Журн. аналит. химии. 2019. Т. 74. № 11. С. 846. https://doi.org/10.1134/S106193481911011X
  8. Smith E.L., Abbott A.P., Ryder K.S. Deep eutectic solvents (DESs) and their applications // Chem. Rev. 2014. V. 114. № 21. P. 11060. https://doi.org/10.1021/cr300162p
  9. Shishov A., Bulatov A., Locatelli M., Carradori S., Andruch V. Application of deep eutectic solvents in analytical chemistry. A review // Microchem. J. 2017. V. 135. P. 33. https://doi.org/10.1016/j.microc.2017.07.015
  10. Cao J., Su E. Hydrophobic deep eutectic solvents: The new generation of green solvents for diversified and colorful applications in green chemistry // J. Clean. Prod. 2021. V. 314. Article 127965. https://doi.org/10.1016/j.jclepro.2021.127965
  11. Ma Y., Wang Q., Zhu T. Comparison of hydrophilic and hydrophobic deep eutectic solvents for pretreatment determination of sulfonamides from aqueous environments // Anal. Methods. 2019. V. 11. P. 5901. https://doi.org/10.1039/C9AY02244A
  12. Turnidge J. Pharmacokinetics and pharmacodynamics of fluoroquinolones // Drugs. 1999. V. 58. P. 29. https://doi.org/10.2165/00003495-199958002-00006
  13. Martins M.A.R., Crespo E.A., Pontes P.V.A., Silva L.P., Bülow M., Maximo G.J., Batista E.A.C., Held C., Pinho S.P., Coutinho J.A.P. Tunable hydrophobic eutectic solvents based on terpenes and monocarboxylic acid // ACS Sustain. Chem. Eng. 2018. V. 6. P. 8836. https://doi.org/10.1021/acssuschemeng.8b01203
  14. Taverniers I., De Loose M., Van Bockstaele E. Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance // Trends Anal. Chem. 2004. V. 23. P. 535. https://doi.org/10.1016/j.trac.2004.04.001
  15. Herrera-Herrera A.V., Hernández-Borges J., Borges-Miquel T.M., Rodríguez-Delgado M.Á. Dispersive liquid-liquid microextraction combined with ultra-high performance liquid chromatography for the simultaneous determination of 25 sulfonamide and quinolone antibiotics in water samples // J. Pharm. Biomed. Anal. 2013. V. 75. P. 130. https://doi.org/10.1016/j.jpba.2012.11.026
  16. Selahle S.K., Nomngongo P.N. Determination of fluoroquinolones in the environmental samples using vortex assisted dispersive liquid-liquid microextraction coupled with high performance liquid chromatography // Int. J. Environ. Anal. Chem. 2020. V. 100. P. 282. https://doi.org/10.1080/03067319.2019.1636042
  17. Herrera-Herrera A.V., Hernández-Borges J., Borges-Miquel T.M., Rodríguez-Delgado M.Á. Dispersive liquid–liquid microextraction combined with nonaqueous capillary electrophoresis for the determination of fluoroquinolone antibiotics in waters // Electrophoresis. 2010. V. 31. P. 3457. https://doi.org/10.1002/elps.201000285

Қосымша файлдар


© И.И. Тимофеева, К.А. Барбаянов, А.В. Булатов, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».