Solvability of a nonlinear model Boltzmann equation in the problem of a plane shock wave


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider a nonlinear system of integral equations describing the structure of a plane shock wave. Based on physical reasoning, we propose an iterative method for constructing an approximate solution of this system. The problem reduces to studying decoupled scalar nonlinear and linear integral equations for the gas temperature, density, and velocity. We formulate a theorem on the existence of a positive bounded solution of a nonlinear equation of the Uryson type. We also prove theorems on the existence and uniqueness of bounded positive solutions for linear integral equations in the space L1[−r, r] for all finite r < +∞. For a more general nonlinear integral equation, we prove a theorem on the existence of a positive solution and also find a lower bound and an integral upper bound for the constructed solution.

Авторлар туралы

A. Khachatryan

Armenian National Agrarian University

Хат алмасуға жауапты Автор.
Email: khach82@rambler.ru
Армения, Yerevan

Kh. Khachatryan

Institute of Mathematics

Email: khach82@rambler.ru
Армения, Yerevan

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016