Solvability of a nonlinear model Boltzmann equation in the problem of a plane shock wave
- Авторы: Khachatryan A.K.1, Khachatryan K.A.2
-
Учреждения:
- Armenian National Agrarian University
- Institute of Mathematics
- Выпуск: Том 189, № 2 (2016)
- Страницы: 1609-1623
- Раздел: Article
- URL: https://bakhtiniada.ru/0040-5779/article/view/170832
- DOI: https://doi.org/10.1134/S0040577916110064
- ID: 170832
Цитировать
Аннотация
We consider a nonlinear system of integral equations describing the structure of a plane shock wave. Based on physical reasoning, we propose an iterative method for constructing an approximate solution of this system. The problem reduces to studying decoupled scalar nonlinear and linear integral equations for the gas temperature, density, and velocity. We formulate a theorem on the existence of a positive bounded solution of a nonlinear equation of the Uryson type. We also prove theorems on the existence and uniqueness of bounded positive solutions for linear integral equations in the space L1[−r, r] for all finite r < +∞. For a more general nonlinear integral equation, we prove a theorem on the existence of a positive solution and also find a lower bound and an integral upper bound for the constructed solution.
Ключевые слова
Об авторах
A. Khachatryan
Armenian National Agrarian University
Автор, ответственный за переписку.
Email: khach82@rambler.ru
Армения, Yerevan
Kh. Khachatryan
Institute of Mathematics
Email: khach82@rambler.ru
Армения, Yerevan
Дополнительные файлы
