Four competing interactions for models with an uncountable set of spin values on a Cayley tree
- Авторы: Rozikov U.A.1, Haydarov F.H.2
-
Учреждения:
- Institute of Mathematics and Information Technologies
- National University of Uzbekistan
- Выпуск: Том 191, № 3 (2017)
- Страницы: 910-923
- Раздел: Article
- URL: https://bakhtiniada.ru/0040-5779/article/view/171279
- DOI: https://doi.org/10.1134/S0040577917060095
- ID: 171279
Цитировать
Аннотация
We consider models with four competing interactions (external field, nearest neighbor, second neighbor, and three neighbors) and an uncountable set [0, 1] of spin values on the Cayley tree of order two. We reduce the problem of describing the splitting Gibbs measures of the model to the problem of analyzing solutions of a nonlinear integral equation and study some particular cases for Ising and Potts models. We also show that periodic Gibbs measures for the given models either are translation invariant or have the period two. We present examples where periodic Gibbs measures with the period two are not unique.
Об авторах
U. Rozikov
Institute of Mathematics and Information Technologies
Автор, ответственный за переписку.
Email: rozikovu@yandex.ru
Узбекистан, Tashkent
F. Haydarov
National University of Uzbekistan
Email: rozikovu@yandex.ru
Узбекистан, Tashkent
Дополнительные файлы
