Four competing interactions for models with an uncountable set of spin values on a Cayley tree


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider models with four competing interactions (external field, nearest neighbor, second neighbor, and three neighbors) and an uncountable set [0, 1] of spin values on the Cayley tree of order two. We reduce the problem of describing the splitting Gibbs measures of the model to the problem of analyzing solutions of a nonlinear integral equation and study some particular cases for Ising and Potts models. We also show that periodic Gibbs measures for the given models either are translation invariant or have the period two. We present examples where periodic Gibbs measures with the period two are not unique.

Авторлар туралы

U. Rozikov

Institute of Mathematics and Information Technologies

Хат алмасуға жауапты Автор.
Email: rozikovu@yandex.ru
Өзбекстан, Tashkent

F. Haydarov

National University of Uzbekistan

Email: rozikovu@yandex.ru
Өзбекстан, Tashkent

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017