An integral geometry lemma and its applications: The nonlocality of the Pavlov equation and a tomographic problem with opaque parabolic objects
- Авторы: Grinevich P.G.1,2,3, Santini P.M.4,5
-
Учреждения:
- Landau Institute for Theoretical Physics
- Lomonosov Moscow State University
- Moscow Institute of Physics and Technology
- Dipartimento di Fisica
- Istituto Nazionale di Fisica Nucleare
- Выпуск: Том 189, № 1 (2016)
- Страницы: 1450-1458
- Раздел: Article
- URL: https://bakhtiniada.ru/0040-5779/article/view/170794
- DOI: https://doi.org/10.1134/S0040577916100056
- ID: 170794
Цитировать
Аннотация
Written in the evolutionary form, the multidimensional integrable dispersionless equations, exactly like the soliton equations in 2+1 dimensions, become nonlocal. In particular, the Pavlov equation is brought to the form vt = vxvy - ∂x-1∂y[vy + vx2], where the formal integral ∂x−1 becomes the asymmetric integral \( - \int_x^\infty {dx'} \). We show that this result could be guessed using an apparently new integral geometry lemma. It states that the integral of a sufficiently general smooth function f(X, Y) over a parabola in the plane (X, Y) can be expressed in terms of the integrals of f(X, Y) over straight lines not intersecting the parabola. We expect that this result can have applications in two-dimensional linear tomography problems with an opaque parabolic obstacle.
Об авторах
P. Grinevich
Landau Institute for Theoretical Physics; Lomonosov Moscow State University; Moscow Institute of Physics and Technology
Автор, ответственный за переписку.
Email: pgg@landau.ac.ru
Россия, Chernogolovka; Moscow; Dolgoprudny, Moscow Oblast
P. Santini
Dipartimento di Fisica; Istituto Nazionale di Fisica Nucleare
Email: pgg@landau.ac.ru
Италия, Rome; Rome
Дополнительные файлы
