An integral geometry lemma and its applications: The nonlocality of the Pavlov equation and a tomographic problem with opaque parabolic objects


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Written in the evolutionary form, the multidimensional integrable dispersionless equations, exactly like the soliton equations in 2+1 dimensions, become nonlocal. In particular, the Pavlov equation is brought to the form vt = vxvy - x-1y[vy + vx2], where the formal integral x−1 becomes the asymmetric integral \( - \int_x^\infty {dx'} \). We show that this result could be guessed using an apparently new integral geometry lemma. It states that the integral of a sufficiently general smooth function f(X, Y) over a parabola in the plane (X, Y) can be expressed in terms of the integrals of f(X, Y) over straight lines not intersecting the parabola. We expect that this result can have applications in two-dimensional linear tomography problems with an opaque parabolic obstacle.

Авторлар туралы

P. Grinevich

Landau Institute for Theoretical Physics; Lomonosov Moscow State University; Moscow Institute of Physics and Technology

Хат алмасуға жауапты Автор.
Email: pgg@landau.ac.ru
Ресей, Chernogolovka; Moscow; Dolgoprudny, Moscow Oblast

P. Santini

Dipartimento di Fisica; Istituto Nazionale di Fisica Nucleare

Email: pgg@landau.ac.ru
Италия, Rome; Rome

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016