Katalizatory polimerizatsii etilena na osnove nanesennykh na silikagel' bi- i monoyadernykh kompleksov Cr(II) s tsiklopentadienil'nymi ligandami
- 作者: Ovchinnikova V.I1, Nifant'ev I.E1, Komarov P.D1, Minyaev M.E1, Ivchenko P.V1
-
隶属关系:
- 期: 卷 65, 编号 6 (2025)
- 页面: 520–530
- 栏目: Articles
- URL: https://bakhtiniada.ru/0028-2421/article/view/356257
- DOI: https://doi.org/10.7868/S3034562625060082
- ID: 356257
如何引用文章
全文:
详细
作者简介
V. Ovchinnikova
Email: phpasha1@yandex.ru
ORCID iD: 0000-0002-7859-0376
I. Nifant'ev
ORCID iD: 0000-0001-9151-1890
P. Komarov
ORCID iD: 0000-0003-4181-5022
M. Minyaev
ORCID iD: 0000-0002-4089-3697
P. Ivchenko
ORCID iD: 0000-0002-0181-5952
参考
- Market volume of polyethylene worldwide from 2015 to 2022, with a forecast for 2023 to 2030. Statistica. https://www.statista.com/statistics/1245162/polyethylene-market-volume-worldwide/ (дата обращения: 15.09.2025).
- Jubinville D., Esmizadeh E., Saikrishnan S., Tzoganakis C., Mekonnen T. A comprehensive review of global production and recycling methods of polyolefin (PO) based products and their post-recycling applications // Sustain. Mater. Technol. 2020. V. 25. ID e00188.https://doi.org/10.1016/j.susmat.2020.e00188
- Global Polyolefins Market Snapshot. FGE Nexant. https://www.nexanteca.com/blog/202410/global-polyolefins-market-snapshot (дата обращения: 18.10.2025).
- Sauter D.W., Taoufik M., Boisson C. Polyolefins, a success story // Polymers. 2017. V. 9. № 6. ID 185.https://doi.org/10.3390/polym9060185
- Nifant’ev, I.E., Salakhov I.I., Ivchenko P.V. Transition metal–(μ-Cl)–aluminum bonding in α-olefin and diene chemistry // Molecules. 2022. V. 27. № 21. ID 7164. https://doi.org/10.3390/molecules27217164
- McDaniel M.P. Controlling polymer properties with the Phillips chromium catalysts // Ind. Eng. Chem. Res. 1988. V. 27. № 9. P. 1559–1564. https://doi.org/10.1021/ie00081a001
- Nifant’ev I., Komarov P., Sadrtdinova G., Safronov V., Kolosov N., Ivchenko P. Mechanistic insights of ethylene polymerization on Phillips chromium catalysts // Polymers. 2024. V. 16. № 5. ID 681. https://doi.org/10.3390/polym16050681
- Shamiri A., Chakrabarti M.H., Jahan S., Hussain M.A., Kaminsky W., Aravind P.V., Yehye W.A. The Influence of Ziegler–Natta and metallocene catalysts on polyolefin structure, properties, and processing ability // Materials. 2014. V. 7. № 7. P. 5069–5108. https://doi.org/10.3390/ma7075069
- Hoganson C.W., Doren D.J., Theopold K.H. Selectivity in the polymerization of olefins with cyclopentadienyl chromium catalysts: A density functional study // Macromolecules. 2004. V. 37. № 2. P. 566–572.https://doi.org/10.1021/ma035080g
- Zecchina A., Spoto G., Bordiga S. Interaction of chromocene with the silica surface, and structure of the active species for ethene polymerization // Faraday Discuss. Chem. Soc. 1989. V. 87. P. 149–160. https://doi.org/10.1039/dc9898700149
- Schnellbach M., Köhler F.H., Blümel J. The Union Carbide catalyst (Cp2Cr + SiO2), studied by solid-state NMR // J. Organomet. Chem. 1996. V. 520. № 1–2. P. 227–230. https://doi.org/10.1016/0022-328x(96)06295-x
- Ellis P.J., Joyner R.W., Maschmeyer T., Masters A.F., Niles D.A., Smith A.K. An EXAFS investigation of chromocene on silica using empirical, semi-empirical and ab initio methods // J. Mol. Catal. A: Chem. 1996. V. 111. № 3. P. 297–305. https://doi.org/10.1016/1381-1169(96)00012-x
- Karol F.J., Wu C., Reichle W.T., Maraschin N.J. Role of silanol groups in formation of supported chromocene catalysts // J. Catal. 1979. V. 60. № 1. P. 68–76. https://doi.org/10.1016/0021-9517(79)90068-x
- Gallas J.-P., Goupil J.-M., Vimont A., Lavalley J.-C., Gil B., Gilson J.-P., Miserque O. Quantification of water and silanol species on various silicas by coupling IR spectroscopy and in situ thermogravimetry // Langmuir. 2009. V. 25. № 10. P. 5825–5834. https://doi.org/10.1021/la802688w
- Ide M., El-Roz M., De Canck E., Vicente A., Planckaert T., Bogaerts T., Van Driessche I., Lynen F., Van Speybroeck V., Thybault-Starzyk F., Van Der Voort P. Quantification of silanol sites for the most common mesoporous ordered silicas and organosilicas: total versus accessible silanols // Phys. Chem. Chem. Phys. 2013. V. 15. № 2. P. 642–650.https://doi.org/10.1039/c2cp42811c
- Messere R., Noels A.F., Dournel P., Breulet J. Derivatives of chromocene in ethylene polymerisation. In: Metathesis Polymerization of Olefins and Polymerization of Alkynes / Еd.Y. Imamoglu, NATO ASI Series. Springer, Dordrecht. 1998. V. 506. P. 393–401. https://doi.org/10.1007/978-94-011-5188-7_24
- Karol F.J., Munn W.L., Goeke G.L., Wagner B.E., Maraschin N.J. Supported bis(indenyl)– and bis(fluorenyl)–chromium catalysts for ethylene polymerization // J. Polym. Sci.: Polym. Chem. Ed. 1978. V. 16. № 4. P. 771–778. https://doi.org/10.1002/pol.1978.170160405
- Flower K.R., Hitchcock P.B. Crystal and molecular structure of chromocene (η5-C5H5)2Cr // J. Organomet. Chem. 1996. V. 507. № 1–2. P. 275–277.https://doi.org/10.1016/0022-328x(95)05747-d
- Heinemann O., Jolly P.W., Krüger C., Verhovnik G.P.J. Bis(indenyl)chromium is a dimer // Organometallics. 1996. V. 15. № 26. P. 5462–5463. https://doi.org/10.1021/om960899m
- Grimmer N.E., Coville N.J., Koning C.B., Smith J.M., Cook L.M. Zirconium bis-indenyl compounds. Synthesis and X-ray crystallography study of 1- and 2-substituted bis(R-indenyl)zirconium dichloride metallocenes // J. Organomet. Chem. 2000. V. 616. № 1–2. P. 112–127. https://doi.org/10.1016/s0022-328x(00)00570-2
- Wilkinson G. Cyclopentadienyl compounds of chromium, molybdenum and tungsten // J. Am. Chem. Soc. 1954. V. 76. № 1. P. 209–211. https://doi.org/10.1021/ja01630a053
- Meredith M.B., Crisp J.A., Brady E.D., Hanusa T.P., Yee G.T., Brooks N.R., Kucera B.E., Young V.G. High-Spin and spin-crossover behavior in monomethylated bis(indenyl)chromium(II) complexes // Organometallics. 2006. V. 25. № 21. P. 4945–4952.https://doi.org/10.1021/om060534u
- Brunauer S., Emmett P.H., Teller E. Adsorption of gases in multimolecular layers // J. Am. Chem. Soc. 1938. V. 60. № 2. P. 309–319. https://doi.org/10.1021/ja01269a023
- Bae Y.-S., Yazaydın A.Ö., Snurr R.Q. Evaluation of the BET method for determining surface areas of MOFs and zeolites that contain ultra-micropores // Langmuir. 2010. V. 26. № 8. P. 5475–5483. https://doi.org/10.1021/la100449z
- Barrett E.P., Joyner L.G., Halenda P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms // J. Am. Chem. Soc. 1951. V. 73. № 1. P. 373–380.https://doi.org/10.1021/ja01145a126
- Severn J.R. Recent developments in supported polyolefin catalysts: A Review. In: Multimodal Polymers with Supported Catalysts / Еds. A.R. Albunia, F. Prades, D. Jeremic. Cham: Springer, 2019. P. 1–54.https://doi.org/10.1007/978-3-030-03476-4_1
- Ek S., Root A., Peussa M., Niinistö L. Determination of the hydroxyl group content in silica by thermogravimetry and a comparison with 1H MAS NMR results // Thermochim. Acta. 2001. V. 379. № 1–2. P. 201–212.https://doi.org/10.1016/s0040-6031(01)00618-9
- Bardestani 1.R., Patience G.S., Kaliaguine S. Experimental methods in chemical engineering: specific surface area and pore size distribution measurements — BET, BJH, and DFT // Canad. J. Chem. Eng. 2019. V. 97. № 11. P. 2781–2791. https://doi.org/10.1002/cjce.23632
- Comas-Vives A. Amorphous SiO2 surface models: energetics of the dehydroxylation process, strain, ab initio atomistic thermodynamics and IR spectroscopic signatures // Phys. Chem. Chem. Phys. 2016. V. 18. № 10. P. 7475–7482. https://doi.org/10.1039/c6cp00602g
- McDaniel M.P., Schwerdtfeger E.D., Jensen M.D. The «comonomer effect» on chromium polymerization catalysts // J. Catal. 2014. V. 314. P. 109–116. https://doi.org/10.1016/j.jcat.2014.04.002
- Karol F.J., Karapinka G.L., Wu C., Dow A.W., Johnson R.N., Carrick W.L. Chromocene catalysts for ethylene polymerization: Scope of the polymerization // J. Polym. Sci. A‑1: Polym. Chem. 1972. V. 10. № 9. P. 2621–2637. https://doi.org/10.1002/pol.1972.150100910
- Trummer D., Nobile A.G., Payard P.-A., Ashuiev A., Kakiuchi Y., Klose D., Jeschke G., Copéret C. Union carbide polymerization catalysts: from uncovering active site structures to designing molecularly-defined analogs // Chem. Sci. 2022. V. 13. № 37. P. 11091–11098. https://doi.org/10.1039/d2sc04235e
补充文件

