Comparative Evaluation of DNA Extraction Methods from Fecal Samples: Statistical Analysis of Commercial Kits and Laboratory Protocols Using Real-Time PCR Data
- Authors: Kurnosov A.S.1,2, Linde N.N.1,3, Molodtsova P.A.1, Glazunova E.V.4, Moskalenko A.M.1, Sheptulina A.F.5, Bodunova N.A.6, Zlobovskaya O.A.1
-
Affiliations:
- Center for Strategic Planning and Management of Biomedical Health Risks, Federal Medical and Biological Agency
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
- Morozov Children City Clinical Hospital
- National Medical Research Center for Therapy and Preventive Medicine
- The Loginov Moscow Clinical Scientific Center
- Issue: Vol 59, No 6 (2025)
- Pages: 1002-1021
- Section: МЕТОДЫ
- URL: https://bakhtiniada.ru/0026-8984/article/view/358233
- DOI: https://doi.org/10.7868/S3034555325060104
- ID: 358233
Cite item
Abstract
Emergence of new data on the association between composition of the intestinal microbiota and various human diseases have generated increasing interest in its investigation. In this context, selection of the DNA extraction method represents a critical stage in experimental design, significantly affecting the reliability and reproducibility of results. This study presents a comparative analysis of 12 DNA extraction methods applied to 46 fecal samples, including 9 commercial kits and 3 laboratory protocols. We evaluated taxonomic representation, including Gram-positive (Lactobacillaceae, Coprococcus spp., Streptococcus sp., Clostridium leptum) and Gram-negative bacteria (Enterobacteriaceae, Akkermansia muciniphila, Fusobacterium nucleatum, Bacteroides fragilis). Extraction efficiency was assessed by DNA yield, expressed in GE/μL of eluate or in GE/g of feces, as well as by the frequency of low-abundance taxa loss. Based on the lysis type, clustering of methods was demonstrated: mechanical lysis provided stable and high DNA yields, particularly for Gram-positive bacteria, while chemical and enzymatic methods showed lower efficiency. We determined that lysis type and preliminary whole-fecal sample preparation are the key factors affecting DNA extraction efficiency and preservation of the native taxonomic profile. The best results were demonstrated by the QIAamp® PowerFecal® Pro DNA Kit (Qiagen) and the combination of AmpliTest UniProb + AmpliTest RIBO-prep kits (Centre for Strategic Planning, of the Federal medical and biological agency, Russia), both of which outperformed other methods in terms of DNA yield. The QIAamp® Fast DNA Stool Mini Kit (Qiagen) showed minimal losses of low-abundance taxa. These findings can be used for the standardization of extraction methodologies and the development of domestic protocols.
About the authors
A. S. Kurnosov
Center for Strategic Planning and Management of Biomedical Health Risks, Federal Medical and Biological Agency; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Email: ozlobovskaya@cspfmba.ru
Moscow, Russia; Moscow, Russia
N. N. Linde
Center for Strategic Planning and Management of Biomedical Health Risks, Federal Medical and Biological Agency; Morozov Children City Clinical Hospital
Email: ozlobovskaya@cspfmba.ru
Moscow, Russia; Moscow, Russia
P. A. Molodtsova
Center for Strategic Planning and Management of Biomedical Health Risks, Federal Medical and Biological Agency
Email: ozlobovskaya@cspfmba.ru
Moscow, Russia
E. V. Glazunova
Email: ozlobovskaya@cspfmba.ru
Moscow, Russia
A. M. Moskalenko
Center for Strategic Planning and Management of Biomedical Health Risks, Federal Medical and Biological Agency
Email: ozlobovskaya@cspfmba.ru
Moscow, Russia
A. F. Sheptulina
National Medical Research Center for Therapy and Preventive Medicine
Email: ozlobovskaya@cspfmba.ru
Moscow, Russia
N. A. Bodunova
The Loginov Moscow Clinical Scientific Center
Author for correspondence.
Email: ozlobovskaya@cspfmba.ru
Moscow, Russia
O. A. Zlobovskaya
Center for Strategic Planning and Management of Biomedical Health Risks, Federal Medical and Biological Agency
Email: ozlobovskaya@cspfmba.ru
Moscow, Russia
References
- Dore J., Ehrlich S.D., Levenez F., Roume H., Morabito C. and IHMS Consortium (2020) IHMS_SOP 06 V3: Standard operating procedure for fecal samples DNA extraction, Protocol Q. International Human Microbiome Standards.
- Dore J., Ehrlich S.D., Levenez F., Pelletier E., Alberti A., Bertrand L., Bork P., Costea P.I., Sunagawa S., Guarner F., Manichanh C., Santiago A., Zhao L., Shen J., Zhang C., Versalovic J., Luna R.A., Petrosino J., Yang H., Li S., Wang J., Allen-Verece, E. Gloor G., Singh B., IHMS Consortium (2015) IHMS_SOP 07 V2: Standard operating procedure for fecal samples DNA extraction, Protocol H. International Human Microbiome Standards.
- Chen C.C., Wu W.K., Chang C.M., Panyod S., Lu T.P., Liou J.M., Fang Y.J., Chuang E.Y., Wu M.S. (2020) Comparison of DNA stabilizers and storage conditions on preserving fecal microbiota profiles. J. Formos. Med. Assoc. 119, 1791–1798.
- Dore J., Ehrlich S., Levenez F., Pelletier E., Alberti A., Bertrand L., Bork P., Costea P.I., Sunagawa S., Guarner F., Manichanh C., Santiago A., Zhao L., Shen J., Zhang C., Versalovic J., Luna R.A., Petrosino J., Yang H., Li S., Wang J., Allen-Verece, E., Gloor G., Singh B., IHMS Consortium (2015) IHMS_SOP 07 V2: Standard operating procedure for fecal samples DNA extraction, Protocol H. International Human Microbiome Standards.
- Zhang B.W., Li M., Ma L.C., Wei F.W. (2006) A widely applicable protocol for DNA isolation from fecal samples. Biochem. Genet. 44, 494–503.
- Isokafantā H., Tomnikov N., Vanhatalo S., Munukka E., Huovinen P., Hakanea A.J., Kallonen T. (2024) High-throughput DNA extraction strategy for fecal microbiome studies. Microbiol. Spectr. 12, e02932–23.
- Yu Z., Morrison M. (2004) Improved extraction of PCR-quality community DNA from digesta and fecal samples. BioTechniques. 36, 808–812.
- Galla G., Praeg N., Rzehak T., Sprecher E., Colla F., Seeber J., Illmer P., Hauffe H.C. (2024) Comparison of DNA extraction methods on different sample matrices within the same terrestrial ecosystem. Sci. Rep. 14, 8715.
- Yang F., Sun J., Luo H., Ren H., Zhou H., Lin Y., Han M., Chen B., Liao H., Brix S., Li J. (2020) Assessment of fecal DNA extraction protocols for metagenomic studies. GigaScience. 9, giaa071.
- Li X., Bosch-Tijhof C.J., Wei X., de Soet J.J., Crieland W., Loveren C.V., Deng D.M. (2020) Efficiency of chemical versus mechanical disruption methods of DNA extraction for the identification of oral Gram-positive and Gram-negative bacteria. J. Int. Med. Res. 48, 300060529925594.
- Zhang C., Thakkar P.V., Powell S.E., Sharma P., Vennelaganti S., Betel D., Shah M.A. (2018) A comparison of homogenization vs. enzymatic lysis for microbiome profiling in clinical endoscopic biopsy tissue samples. Front. Microbiol. 9, 3246.
- Chapuis M.P., Benoit L., Galan M. (2023) Evaluation of 96-well high-throughput DNA extraction methods for 16S rRNA gene metalbarcoding. Mol. Ecol. Resour. 23, 1509–1525.
- Elwick K., Zeng X., King J., Budowle B., Hughes-Stamm S. (2018) Comparative tolerance of two massively parallel sequencing systems to common PCR inhibitors. Int. J. Legal. Med. 132, 983–995.
- Li S., Liu X., Li Z., Liu H., Hu D. (2023) Combination of direct boiling and glass beads increases the purity and accuracy of bacterial DNA extraction. Biotechnol. J. 18, e2300135.
- Mateos C., Nieves-Remacha M.J., Rincón J.A. (2019) Automated platforms for reaction self-optimization in flow. React. Chem. Eng. 4, 1536–1544.
- Gandhi H., Jain M., Gupta S., Singh A.K., Kumar A., Sohal J.S. (2023) Comparative evaluation of various in-house protocols on diagnostic performance for paratuberculosis IS900 PCR. Mol. Biol. Rep. 50(1), 943–947.
- Drapkina O.M., Ashniev G.A., Zlobovskaya O.A., Yafarova A.A., Dementeva E.V., Kaburova A.N., Meshkov I.O., Sheptulina A.F., Kiselev A.R., Kontsevaya A.V., Zhamalov L.M. (2022) Diversities in the gut microbial patterns in patients with atherosclerotic cardiovascular diseases and certain heart failure phenotypes. Biomedicines. 10, 2762.
- Ness T.E., Meiwes L., Kay A., Mejia R., Lange C., Farhat M., Mandalakas A., DiNardo A. (2023) Optimizing DNA extraction from pediatric stool for diagnosis of tuberculosis and use in next-generation sequencing applications. Microbiol. Spectr. 11, e02269–22.
- Ma Z.Y., Zhang X.M., Wang R., Wang M., Liu T., Tan Z.L. (2020) Effects of chemical and mechanical lysis on microbial DNA yield, integrity, and downstream amplicon sequencing of rumen bacteria and protozoa. Front. Microbiol. 11, 581227.
- Cozzolino A., Vergalito F., Tremonte P., Iorizzo M., Lombardi S.J., Sorrentino E., Luongo D., Coppola R., Di Marco R., Succi M. (2020) Preliminary evaluation of the safety and probiotic potential of Akkermansia muciniphila DSM 22959 in comparison with Lactobacillus rhamnosus GG. Microorganisms. 8, 189.
- Reunanen J., Kainulainen V., Huuskonen L., Ottman N., Belzer C., Huhtinen H., de Vos W.M., Satokari R. (2015) Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer. Appl. Environ. Microbiol. 81, 3655–3662.
- Fancy N., Kniffen D., Melvin M., Kazemian N., Sadeghi J., Letef C.A., D’Aloisio L., Copp A.G., Inaba R., Hans G., Jafaripour S. (2024) Fecal-adherent mucus is a non-invasive source of primary human MUC2 for structural and functional characterization in health and disease. J. Biol. Chem. 300, 105675.
- Sleytr U.B., Glauert A.M. (1976). Ultrastructure of the cell walls of two closely related clostridia that possess different regular arrays of surface subunits. J. Bacteriol. 126, 869–882.
- Ogata S., Hongo M. (1973). Bacterial lysis of Clostridium species I. Lysis of Clostridium species by univalent cation. J. Gen. Appl. Microbiol. 19, 251–261.
- Shi Z., Chen L., Li B., Zhu B., Lyu N. (2022) Comparative analysis of different fecal DNA extraction methods. Sheng Wu Gong Cheng Xue Bao. 38 (9), 3542–3550.
Supplementary files

