ANNEALING-INDUCED STRUCTURAL TRANSFORMATION IN NiO THIN FILMS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The analysis of the results of structural studies using X-ray and electron microscopic diagnostics of NiO films obtained by magnetron sputtering is carried out. The difference in the phase and structural composition of films of different thicknesses before and after annealing is shown. The reasons for these differences are discussed, as well as the role of the interface layer for obtaining stable nanoscale NiO films on sapphire substrates.

作者简介

E. Pashaev

National Research Center "Kurchatov Institute"

Moscow, Russia

A. Nosov

Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences

Ekaterinburg, Russia

I. Subbotin

National Research Center "Kurchatov Institute"

Moscow, Russia

A. Belyaeva

National Research Center "Kurchatov Institute"

Moscow, Russia

O. Kondratev

National Research Center "Kurchatov Institute"

Moscow, Russia

S. Nikolaeva

National Research Center "Kurchatov Institute"

Moscow, Russia

I. Trunkin

National Research Center "Kurchatov Institute"

Moscow, Russia

A. Vasiliev

National Research Center "Kurchatov Institute"; Moscow Institute of Physics and Technology (National Research University)

Email: a.vasiliev56@gmail.com
Moscow, Russia; Dolgoprudny, Russia

参考

  1. Baltz V., Manchon A., Tsoi M. et al. // Rev. Mod. Phys. 2018. V. 90. № 1. P. 015005. https://doi.org/10.1103/RevModPhys.90.015005
  2. Jungwirth T., Marti X., Wadley P. et al. // Nat. Nanotechnol. 2016. V. 11. № 3. P. 231. https://doi.org/10.1038/nnano.2016.18
  3. Jungfleisch M.B., Zhang W., Hoffmann A. // Phys. Lett. A. 2018. V. 382. № 13. P. 865. https://doi.org/10.1016/j.physleta.2018.01.008
  4. Wang J., Cai J., Lin Y.H. et al. // Appl. Phys. Lett. 2005. V. 87. № 20. P. 1. https://doi.org/10.1063/1.2130532
  5. Mallick P., Rath C., Biswal R. et al. // Indian J. Phys. 2009. V. 83. № 4. P. 517. https://doi.org/10.1007/s12648-009-0012-4
  6. Mallick P.C., Mishra N. // Am. J. Mater. Sci. 2012. V. 2. № 3. P. 66. https://doi.org/10.5923/j.materials.20120203.06
  7. Головко Ю.И., Мухортов В.М., Юзюк Ю.И. и др. // ФТТ. 2008. Т. 50. Вып. 3. С. 467.
  8. Li H., Roytburd A.L., Alpay S.P. et al. // Appl. Phys. Lett. 2001. V. 78. № 16. P. 2354. https://doi.org/10.1063/1.1359141
  9. Chen H.-L., Lu Y.-M., Hwang W.-S. // Mater. Trans. 2005. V. 46. № 4. P. 872. https://doi.org/10.2320/matertrans.46.872
  10. Девятериков Д.И., Проглядо В.В., Жакетов В.Д. и др. // Физика металлов и металловедение. 2021. Т. 122. № 5. С. 499.
  11. Antropov N.O., Kravtsov E.A., Makarova M. V. et al. // Phys. Rev. B. 2021. V. 104. № 5. https://doi.org/10.1103/PhysRevB.104.054414
  12. Walls B., Mazilkin A.A., Mukhamedov B.O. et al. // Sci. Rep. 2021. V. 11. № 1. P. 1. https://doi.org/10.1038/s41598-021-82070-1
  13. Wang Y., Ghanbaja J., Boulet P. et al. // Acta Mater. 2019. V. 164. P. 648. https://doi.org/10.1016/j.actamat.2018.11.018
  14. Park S., Ahn H.S., Lee C.K. et al. // Phys. Rev. B. 2008. V. 77. № 13. P. 134103. https://doi.org/10.1103/PhysRevB.77.134103
  15. Zhao Y., Xing W., Xu X. et al. // Phys. Status Solidi. B. 2021. V. 258. № 2. P. 2000377. https://doi.org/10.1002/pssb.202000377
  16. Ikenoue T., Inoue J., Miyake M. et al. // J. Cryst. Growth. 2019. V. 507. P. 379. https://doi.org/10.1016/j.jcrysgro.2018.11.032
  17. Lee J.H., Kwon Y.H., Kong B.H. et al. // Cryst. Growth Des. 2012. V. 12. № 5. P. 2495. https://doi.org/10.1021/cg3001174
  18. Hotovy I., Liday J., Sitter H. et al. // J. Electr. Eng. Bratislava. 2002. V. 53. № 12. P. 339.
  19. Lahiji F.A.F., Paul B., le Febvrier A. et al. // Thin Solid Films. 2024. V. 808. P. 140566. https://doi.org/10.1016/j.tsf.2024.140566
  20. Kate R.S., Bulakhe S.C., Deokate R.J. // J. Electron. Mater. 2019. V. 48. № 5. P. 3220. https://doi.org/10.1007/s11664-019-07074-0
  21. Boukhachem A., Boughalmi R., Karyaoui M. et al. // Mater. Sci. Eng. B. 2014. V. 188. P. 72. https://doi.org/10.1016/j.mseb.2014.06.001
  22. Sun H., Chen S.C., Peng W.C. et al. // Coatings. 2018. V. 8. № 5. P. 168. https://doi.org/10.3390/coatings8050168
  23. Ashok Kumar Reddy Y., Sivasankar Reddy A., Sreedhara Reddy P. // J. Alloys Compd. 2014. V. 583. P. 396. https://doi.org/10.1016/j.jallcom.2013.08.180
  24. Zhong Q., Ohuchi F.S. // J. Vac. Sci. Tech. A. 1990. V. 8. № 3. P. 2107. https://doi.org/10.1116/1.577011
  25. Sygellou L., Zafeiratos S., Tsud N. et al. // Surf. Interface Anal. 2002. V. 34. № 1. P. 545. https://doi.org/10.1002/sia.1357
  26. Subbotin I.A., Pashaev E.M., Dubinin S.S. et al. // Acta Cryst. B. 2024. V. 80. P. 340. https://doi.org/10.1107/S2052520624005675
  27. Васильев А.Л., Субботин И.А., Беляева А.О. и др. // Физика металлов и металловедение. 2024. Т. 125. № 1. С. 70.
  28. Hill R.J. // Am. Mineral. 1984. V. 69. P. 937.
  29. Pettit F.S., Randklev E.H., Felten E.J. // J. Am. Ceram. Soc. 1966. V. 49. № 4. P. 199. https://doi.org/10.1111/j.1151-2916.1966.tb13233.x
  30. Bolt P.H., Ten Grotenhuis E., Geus J.W. et al. // Surf. Sci. 1995. V. 329. P. 227. https://doi.org/10.1016/0039-6028(95)00063-1
  31. Kotula P.G., Carter C.B. // J. Am. Ceram. Soc. 1998. V. 81. № 11. P. 2869. https://doi.org/10.1111/j.1151-2916.1998.tb02709.x
  32. Jiao Y., Zhang S., Tan Y. // Entropy. 2022. V. 24. № 2. P. 245. https://doi.org/10.3390/e24020245
  33. Wyckoff R.W.G. // Crystal Structures. New York: Interscience Publishers, 1963. V. 1. P. 239.
  34. Lahiji F.A.F., Bairagi S., Magnusson R. et al. // J. Vac. Sci. Tech. 2023. V. 41. № 6. P. 063402. https://doi.org/10.1016/j.tsf.2024.140566
  35. Yadav S.K., Dhar S. // Semicond. Sci. Technol. 2021. V. 36. № 5. P. 055005. https://doi.org/10.1088/1361-6641/abed8e
  36. Roelofsen J.N., Peterson R.C., Raudsepp Mati // Am. Mineral. 1992. V. 77. P. 522.
  37. Harrison R.J., Redfern S.A.T., O’Neill H.St.C. // Am. Mineral. 1998. V. 83. P. 1092.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).