СТРУКТУРНЫЕ ПРЕОБРАЗОВАНИЯ В ТОНКИХ ПЛЕНКАХ NiO ПОСЛЕ ОТЖИГА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Проведен анализ результатов структурных исследований методами рентгеновской и электронно-микроскопической диагностики пленок NiO, полученных при магнетронном напылении. Показано различие структуры и состава пленок разной толщины до и после термообработки. Обсуждаются причины этих различий, а также причины формирования слоя на границе раздела, важного для получения стабильных наноразмерных пленок NiO на подложках сапфира.

Об авторах

Э. М Пашаев

Национальный исследовательский центр "Курчатовский институт"

Москва, Россия

А. П Носов

Институт физики металлов им. М.Н. Михеева УрО РАН

Екатеринбург, Россия

И. А Субботин

Национальный исследовательский центр "Курчатовский институт"

Москва, Россия

А. О Беляева

Национальный исследовательский центр "Курчатовский институт"

Москва, Россия

О. А Кондратьев

Национальный исследовательский центр "Курчатовский институт"

Москва, Россия

С. Г Николаева

Национальный исследовательский центр "Курчатовский институт"

Москва, Россия

И. Н Трунькин

Национальный исследовательский центр "Курчатовский институт"

Москва, Россия

А. Л Васильев

Национальный исследовательский центр "Курчатовский институт"; Московский физико-технический институт (национальный исследовательский университет)

Email: a.vasiliev56@gmail.com
Москва, Россия; Долгопрудный, Россия

Список литературы

  1. Baltz V., Manchon A., Tsoi M. et al. // Rev. Mod. Phys. 2018. V. 90. № 1. P. 015005. https://doi.org/10.1103/RevModPhys.90.015005
  2. Jungwirth T., Marti X., Wadley P. et al. // Nat. Nanotechnol. 2016. V. 11. № 3. P. 231. https://doi.org/10.1038/nnano.2016.18
  3. Jungfleisch M.B., Zhang W., Hoffmann A. // Phys. Lett. A. 2018. V. 382. № 13. P. 865. https://doi.org/10.1016/j.physleta.2018.01.008
  4. Wang J., Cai J., Lin Y.H. et al. // Appl. Phys. Lett. 2005. V. 87. № 20. P. 1. https://doi.org/10.1063/1.2130532
  5. Mallick P., Rath C., Biswal R. et al. // Indian J. Phys. 2009. V. 83. № 4. P. 517. https://doi.org/10.1007/s12648-009-0012-4
  6. Mallick P.C., Mishra N. // Am. J. Mater. Sci. 2012. V. 2. № 3. P. 66. https://doi.org/10.5923/j.materials.20120203.06
  7. Головко Ю.И., Мухортов В.М., Юзюк Ю.И. и др. // ФТТ. 2008. Т. 50. Вып. 3. С. 467.
  8. Li H., Roytburd A.L., Alpay S.P. et al. // Appl. Phys. Lett. 2001. V. 78. № 16. P. 2354. https://doi.org/10.1063/1.1359141
  9. Chen H.-L., Lu Y.-M., Hwang W.-S. // Mater. Trans. 2005. V. 46. № 4. P. 872. https://doi.org/10.2320/matertrans.46.872
  10. Девятериков Д.И., Проглядо В.В., Жакетов В.Д. и др. // Физика металлов и металловедение. 2021. Т. 122. № 5. С. 499.
  11. Antropov N.O., Kravtsov E.A., Makarova M. V. et al. // Phys. Rev. B. 2021. V. 104. № 5. https://doi.org/10.1103/PhysRevB.104.054414
  12. Walls B., Mazilkin A.A., Mukhamedov B.O. et al. // Sci. Rep. 2021. V. 11. № 1. P. 1. https://doi.org/10.1038/s41598-021-82070-1
  13. Wang Y., Ghanbaja J., Boulet P. et al. // Acta Mater. 2019. V. 164. P. 648. https://doi.org/10.1016/j.actamat.2018.11.018
  14. Park S., Ahn H.S., Lee C.K. et al. // Phys. Rev. B. 2008. V. 77. № 13. P. 134103. https://doi.org/10.1103/PhysRevB.77.134103
  15. Zhao Y., Xing W., Xu X. et al. // Phys. Status Solidi. B. 2021. V. 258. № 2. P. 2000377. https://doi.org/10.1002/pssb.202000377
  16. Ikenoue T., Inoue J., Miyake M. et al. // J. Cryst. Growth. 2019. V. 507. P. 379. https://doi.org/10.1016/j.jcrysgro.2018.11.032
  17. Lee J.H., Kwon Y.H., Kong B.H. et al. // Cryst. Growth Des. 2012. V. 12. № 5. P. 2495. https://doi.org/10.1021/cg3001174
  18. Hotovy I., Liday J., Sitter H. et al. // J. Electr. Eng. Bratislava. 2002. V. 53. № 12. P. 339.
  19. Lahiji F.A.F., Paul B., le Febvrier A. et al. // Thin Solid Films. 2024. V. 808. P. 140566. https://doi.org/10.1016/j.tsf.2024.140566
  20. Kate R.S., Bulakhe S.C., Deokate R.J. // J. Electron. Mater. 2019. V. 48. № 5. P. 3220. https://doi.org/10.1007/s11664-019-07074-0
  21. Boukhachem A., Boughalmi R., Karyaoui M. et al. // Mater. Sci. Eng. B. 2014. V. 188. P. 72. https://doi.org/10.1016/j.mseb.2014.06.001
  22. Sun H., Chen S.C., Peng W.C. et al. // Coatings. 2018. V. 8. № 5. P. 168. https://doi.org/10.3390/coatings8050168
  23. Ashok Kumar Reddy Y., Sivasankar Reddy A., Sreedhara Reddy P. // J. Alloys Compd. 2014. V. 583. P. 396. https://doi.org/10.1016/j.jallcom.2013.08.180
  24. Zhong Q., Ohuchi F.S. // J. Vac. Sci. Tech. A. 1990. V. 8. № 3. P. 2107. https://doi.org/10.1116/1.577011
  25. Sygellou L., Zafeiratos S., Tsud N. et al. // Surf. Interface Anal. 2002. V. 34. № 1. P. 545. https://doi.org/10.1002/sia.1357
  26. Subbotin I.A., Pashaev E.M., Dubinin S.S. et al. // Acta Cryst. B. 2024. V. 80. P. 340. https://doi.org/10.1107/S2052520624005675
  27. Васильев А.Л., Субботин И.А., Беляева А.О. и др. // Физика металлов и металловедение. 2024. Т. 125. № 1. С. 70.
  28. Hill R.J. // Am. Mineral. 1984. V. 69. P. 937.
  29. Pettit F.S., Randklev E.H., Felten E.J. // J. Am. Ceram. Soc. 1966. V. 49. № 4. P. 199. https://doi.org/10.1111/j.1151-2916.1966.tb13233.x
  30. Bolt P.H., Ten Grotenhuis E., Geus J.W. et al. // Surf. Sci. 1995. V. 329. P. 227. https://doi.org/10.1016/0039-6028(95)00063-1
  31. Kotula P.G., Carter C.B. // J. Am. Ceram. Soc. 1998. V. 81. № 11. P. 2869. https://doi.org/10.1111/j.1151-2916.1998.tb02709.x
  32. Jiao Y., Zhang S., Tan Y. // Entropy. 2022. V. 24. № 2. P. 245. https://doi.org/10.3390/e24020245
  33. Wyckoff R.W.G. // Crystal Structures. New York: Interscience Publishers, 1963. V. 1. P. 239.
  34. Lahiji F.A.F., Bairagi S., Magnusson R. et al. // J. Vac. Sci. Tech. 2023. V. 41. № 6. P. 063402. https://doi.org/10.1016/j.tsf.2024.140566
  35. Yadav S.K., Dhar S. // Semicond. Sci. Technol. 2021. V. 36. № 5. P. 055005. https://doi.org/10.1088/1361-6641/abed8e
  36. Roelofsen J.N., Peterson R.C., Raudsepp Mati // Am. Mineral. 1992. V. 77. P. 522.
  37. Harrison R.J., Redfern S.A.T., O’Neill H.St.C. // Am. Mineral. 1998. V. 83. P. 1092.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».