Спектроскопия радиационно-индуцированных интермедиатов, образующихся при облучении фосфина в инертных матрицах: анионные частицы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Фосфин (PH3) является одной из ключевых неорганических молекул, которые возникают из различных биогенных соединений в земной и планетных атмосферах. При действии ионизирующих излучений на молекулы фосфина возможно образование заряженных частиц, характеристики которых изучены недостаточно. В настоящей работе впервые экспериментально получены и отнесены колебательные спектры изолированных анионов PH2 и PH–•, стабилизирующихся при действии рентгеновского излучения на системы PH3/Ne и PH3/Ar при 4.5 К. Полученные результаты показывают, что частоты валентных колебаний P−H в анионных частицах сдвинуты в красную область относительно частот колебаний в соответствующих нейтральных молекулах или радикалах, что свидетельствует об ослаблении P−H связей в результате захвата электрона. На основании анализа структуры полос поглощения PH–• в неоновой матрице предположено, что этот анион может возникать по двум различным механизмам – захвата термализрованных электронов парами PH…H2, стабилизированными в одной клетке, и диссоциативного захвата “горячих” электронов молекулами фосфина.

Об авторах

О. Д. Панфутов

Химический факультет МГУ им. М.В. Ломоносова, Москва, Россия

Е. С. Ширяева

Химический факультет МГУ им. М.В. Ломоносова, Москва, Россия

Д. А. Тюрин

Химический факультет МГУ им. М.В. Ломоносова, Москва, Россия

В. И. Фельдман

Химический факультет МГУ им. М.В. Ломоносова, Москва, Россия

Email: feldman@rad.chem.msu.ru

Список литературы

  1. Bains W., Petkowski J.J., Sousa-Silva C. et al. // Astrobiology. 2019. V. 19. № 7. P. 885; https://doi.org/10.1089/ast.2018.1958
  2. Sousa-Silva C., Seager S., Ranjan S. et al. // Astrobiology. 2020. V. 20. № 2. P. 235; https://doi.org/10.1089/ast.2018.1954
  3. Omran A., Oze C., Jackson B. et al. // Astrobiology. 2021. V. 21. № 10. P. 1264; https://doi.org/10.1089/ast.2021.0034
  4. Turner A.M., Abplanalp M.J., Kaiser R.I. // Astrophys. J. Lett. 2016. V. 819. № 2. P. 97; https://doi.org/10.3847/0004-637X/819/2/97
  5. Turner A.M., Bergantini A., Abplanalp M.J. et al. // Nat. Commun. 2018. V. 9. № 1. P. 3851; https://doi.org/10.1038/s41467-018-06415-7
  6. Zhu C., Eckhardt A.K., Chandra S. et al. // Nat. Commun. 2021. V. 12. № 1. 5467; https://doi.org/10.1038/s41467-021-25775-1
  7. Zhu C., Bergantini A., Singh S.K. et al. // Chem. Commun. 2021. V. 57. № 40. P. 4958; https://doi.org/10.1039/D0CC08411E
  8. Feldman V.I., Ryazantsev S.V., Saenko E.V. et al. // Rad. Phys. Chem. 2016. V. 124. P. 7; https://doi.org/10.1039/C6CP06082J
  9. Saenko E.V., Feldman V.I. // Phys. Chem. Chem. Phys. 2016. V. 18. № 47. P. 32503; https://doi.org/10.1039/C6CP06082J
  10. Shiryaeva E.S., Tyurin D.A., Feldman V.I. // J. Phys. Chem. A. 2016. V. 120. № 40. P. 7847; https://doi.org/10.1021/acs.jpca.6b07301
  11. Zasimov P.V., Sanochkina E.V., Feldman V.I. // Phys. Chem. Chem. Phys. 2022. V. 24. № 1. P. 419; https://doi.org/10.1039/D1CP03999G
  12. Zasimov P.V., Sanochkina E.V., Tyurin D.A. et al. // Phys. Chem. Chem. Phys. V. 25. № 6. P. 4624; https://doi.org/10.1039/D2CP05356J
  13. Zasimov P.V., Sanochkina E.V., Tyurin D.A. et al. // Phys. Chem. Chem. Phys. V. 25. № 33. P. 21883; https://doi.org/10.1039/D3CP02834H
  14. Shiryaeva E.S., Panfutov O.D., Tyurin D.A. et al. // Rad. Phys. Chem. 2023. V. 206. 110786; https://doi.org/10.1016/j.radphyschem.2023.110786
  15. Knight L.B., Tyler D.J., Kudelko P. et al. // J. Chem. Phys. 1993. V. 99. № 10. P. 7384; https://doi.org/10.1063/1.465719
  16. Jacobs H., Hassiepen K.M. // Z. Anorg. Allg. Chem. 1985. V. 531. № 12. P. 108; https://doi.org/10.1002/zaac.19855311216
  17. Knoll F., Bergerhoff G. // Monatsh. Chem. 1966. V. 97. P. 808; https://doi.org/10.1007/BF00932752
  18. Feldman V.I. EPR and IR Spectroscopy of Free Radicals and Radical Ions Produced by Radiation in Solid Systems. P. 151. In: Lund, A., Shiotani, M. Applications of EPR in Radiation Research. Springer, Cham, 2014.
  19. Laikov D.N., Ustynyuk Y.A. // Russ. Chem. Bull. 2005. V. 54. P. 820; https://doi.org/10.1007/s11172-005-0329-x
  20. Laikov D.N. // Chem. Phys.Lett. 2005. V. 416. № 1–3. P. 116; https://doi.org/10.1016/j.cplett.2005.09.046
  21. Laikov D.N. // Theor. Chem. Acc. 2019. V. 138. P. 1; https://doi.org/10.1007/s00214-019-2432-3
  22. Behrendt W. et al. Phosphorus and Hydrogen. P Phosphorus. Gmelin Handbook of Inorganic and Organometallic Chemistry 8th Edition, v. P / a-c / c / 1. Springer, Berlin, Heidelberg, 1993; https://doi.org/10.1007/978-3-662-08847-0_1
  23. Ervin K.M., Lineberger W.C. // J. Chem. Phys. 2005. V. 122. № 19. 194303; https://doi.org/10.1063/1.1881153
  24. Schwentner N., Himpsel F.J., Saile V. et al. // Phys. Rev. Lett. 1975. V. 34. № 9. P. 528; https://doi.org/10.1103/PhysRevLett.34.528
  25. Perluzzo G., Bader G., Caron L.G. et al. // Phys. Rev.Lett. 1985. V. 55. № 5. P. 545; https://doi.org/10.1103/PhysRevLett.55.545
  26. Steinberger I.T., Bass A.D., Shechter R. et al. // Phys. Rev. B. 1993. V. 48. № 11. P. 8290; https://doi.org/10.1103/PhysRevB.48.8290
  27. Rosmus P., Meyer W. // J. Chem. Phys. 1978. V. 69. № 6. P. 2745; https://doi.org/10.1063/1.436871
  28. Szmytkowski C., Kłosowski Ł., Domaracka A. et al. // J. Phys. B. 2004. V. 37. № 9. P. 1833; https://doi.org/10.1088/0953-4075/37/9/005
  29. Halmann M., Platzner I. // J. Phys. Chem. 1969. V. 73. № 12. P. 4376; https://doi.org/10.1021/j100846a062

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».