Spectroscopy of radiation-induced intermediates formed by phosphine irradiation in inert matrices: anionic particles

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Phosphine (PH3) is one of the key inorganic molecules that arise from various biogenic compounds in terrestrial and planetary atmospheres. The action of ionizing radiation on phosphine molecules may result in the formation of charged particles, the characteristics of which are not sufficiently studied. In the present work, the vibrational spectra of isolated anions PH2 and PH–• which can be stabilized by the action of X-ray radiation on the systems PH3/Ne and PH3/Ar at 4.5 K have been experimentally obtained and characterized for the first time. The results obtained show that the frequencies of P–H valence vibrations in anionic particles are shifted to the red region relative to the frequencies of vibrations in the corresponding neutral molecules or radicals, which indicates the weakening of P–H bonds as a result of electron capture. Based on the analysis of the structure of the PH–• absorption bands in the neon matrix, it is suggested that this anion can arise by two different mechanisms – capture of thermalized electrons by PH...H2 pairs stabilized in one cell and dissociative capture of “hot” electrons by phosphine molecules.

Авторлар туралы

O. Panfutov

Chemistry Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia

E. Shiryaeva

Chemistry Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia

D. Tyurin

Chemistry Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia

V. Feldman

Chemistry Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia

Email: feldman@rad.chem.msu.ru

Әдебиет тізімі

  1. Bains W., Petkowski J.J., Sousa-Silva C. et al. // Astrobiology. 2019. V. 19. № 7. P. 885; https://doi.org/10.1089/ast.2018.1958
  2. Sousa-Silva C., Seager S., Ranjan S. et al. // Astrobiology. 2020. V. 20. № 2. P. 235; https://doi.org/10.1089/ast.2018.1954
  3. Omran A., Oze C., Jackson B. et al. // Astrobiology. 2021. V. 21. № 10. P. 1264; https://doi.org/10.1089/ast.2021.0034
  4. Turner A.M., Abplanalp M.J., Kaiser R.I. // Astrophys. J. Lett. 2016. V. 819. № 2. P. 97; https://doi.org/10.3847/0004-637X/819/2/97
  5. Turner A.M., Bergantini A., Abplanalp M.J. et al. // Nat. Commun. 2018. V. 9. № 1. P. 3851; https://doi.org/10.1038/s41467-018-06415-7
  6. Zhu C., Eckhardt A.K., Chandra S. et al. // Nat. Commun. 2021. V. 12. № 1. 5467; https://doi.org/10.1038/s41467-021-25775-1
  7. Zhu C., Bergantini A., Singh S.K. et al. // Chem. Commun. 2021. V. 57. № 40. P. 4958; https://doi.org/10.1039/D0CC08411E
  8. Feldman V.I., Ryazantsev S.V., Saenko E.V. et al. // Rad. Phys. Chem. 2016. V. 124. P. 7; https://doi.org/10.1039/C6CP06082J
  9. Saenko E.V., Feldman V.I. // Phys. Chem. Chem. Phys. 2016. V. 18. № 47. P. 32503; https://doi.org/10.1039/C6CP06082J
  10. Shiryaeva E.S., Tyurin D.A., Feldman V.I. // J. Phys. Chem. A. 2016. V. 120. № 40. P. 7847; https://doi.org/10.1021/acs.jpca.6b07301
  11. Zasimov P.V., Sanochkina E.V., Feldman V.I. // Phys. Chem. Chem. Phys. 2022. V. 24. № 1. P. 419; https://doi.org/10.1039/D1CP03999G
  12. Zasimov P.V., Sanochkina E.V., Tyurin D.A. et al. // Phys. Chem. Chem. Phys. V. 25. № 6. P. 4624; https://doi.org/10.1039/D2CP05356J
  13. Zasimov P.V., Sanochkina E.V., Tyurin D.A. et al. // Phys. Chem. Chem. Phys. V. 25. № 33. P. 21883; https://doi.org/10.1039/D3CP02834H
  14. Shiryaeva E.S., Panfutov O.D., Tyurin D.A. et al. // Rad. Phys. Chem. 2023. V. 206. 110786; https://doi.org/10.1016/j.radphyschem.2023.110786
  15. Knight L.B., Tyler D.J., Kudelko P. et al. // J. Chem. Phys. 1993. V. 99. № 10. P. 7384; https://doi.org/10.1063/1.465719
  16. Jacobs H., Hassiepen K.M. // Z. Anorg. Allg. Chem. 1985. V. 531. № 12. P. 108; https://doi.org/10.1002/zaac.19855311216
  17. Knoll F., Bergerhoff G. // Monatsh. Chem. 1966. V. 97. P. 808; https://doi.org/10.1007/BF00932752
  18. Feldman V.I. EPR and IR Spectroscopy of Free Radicals and Radical Ions Produced by Radiation in Solid Systems. P. 151. In: Lund, A., Shiotani, M. Applications of EPR in Radiation Research. Springer, Cham, 2014.
  19. Laikov D.N., Ustynyuk Y.A. // Russ. Chem. Bull. 2005. V. 54. P. 820; https://doi.org/10.1007/s11172-005-0329-x
  20. Laikov D.N. // Chem. Phys.Lett. 2005. V. 416. № 1–3. P. 116; https://doi.org/10.1016/j.cplett.2005.09.046
  21. Laikov D.N. // Theor. Chem. Acc. 2019. V. 138. P. 1; https://doi.org/10.1007/s00214-019-2432-3
  22. Behrendt W. et al. Phosphorus and Hydrogen. P Phosphorus. Gmelin Handbook of Inorganic and Organometallic Chemistry 8th Edition, v. P / a-c / c / 1. Springer, Berlin, Heidelberg, 1993; https://doi.org/10.1007/978-3-662-08847-0_1
  23. Ervin K.M., Lineberger W.C. // J. Chem. Phys. 2005. V. 122. № 19. 194303; https://doi.org/10.1063/1.1881153
  24. Schwentner N., Himpsel F.J., Saile V. et al. // Phys. Rev. Lett. 1975. V. 34. № 9. P. 528; https://doi.org/10.1103/PhysRevLett.34.528
  25. Perluzzo G., Bader G., Caron L.G. et al. // Phys. Rev.Lett. 1985. V. 55. № 5. P. 545; https://doi.org/10.1103/PhysRevLett.55.545
  26. Steinberger I.T., Bass A.D., Shechter R. et al. // Phys. Rev. B. 1993. V. 48. № 11. P. 8290; https://doi.org/10.1103/PhysRevB.48.8290
  27. Rosmus P., Meyer W. // J. Chem. Phys. 1978. V. 69. № 6. P. 2745; https://doi.org/10.1063/1.436871
  28. Szmytkowski C., Kłosowski Ł., Domaracka A. et al. // J. Phys. B. 2004. V. 37. № 9. P. 1833; https://doi.org/10.1088/0953-4075/37/9/005
  29. Halmann M., Platzner I. // J. Phys. Chem. 1969. V. 73. № 12. P. 4376; https://doi.org/10.1021/j100846a062

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».