Drying of colloidal solutions of fluoroalkyl oligomers
- Authors: Kim I.P.1, Kuryavyi V.G.2, Benderskii V.A.1
-
Affiliations:
- Institute of Problems of Chemical Physics
- Institute of Chemistry, Far East Division
- Issue: Vol 51, No 5 (2017)
- Pages: 390-396
- Section: Nanostructured Systems and Materials
- URL: https://bakhtiniada.ru/0018-1439/article/view/157269
- DOI: https://doi.org/10.1134/S0018143917050046
- ID: 157269
Cite item
Abstract
The change in the supramolecular structure upon drying (solvent removal) of colloidal solutions of fluoroalkyl oligomers at atmospheric pressure has been studied using atomic force microscopy. In an initial colloidal solution, micrometer-sized particles of the dense phase consist of randomly oriented oligomers in the form of rigid rods of a 3–5 nm length forming a porous framework filled with solvent molecules, which solvate the oligomer chains. The drying-induced capillary pressure, which in nanosized pores is of the same order of magnitude as the solvation energy, leads to framework deformation, collapse of the pores, and the formation of lamellar and dendritic structures on a 50–100 nm scale. The ordering of these structures (formation of blocks of parallel oriented fibers typical of a fluoroplastic) increases as the heat-treatment temperature and the drying rate are increased, increasing the roughness of the surface (ratio of real to smooth surface area) and its hydrophobicity.
About the authors
I. P. Kim
Institute of Problems of Chemical Physics
Author for correspondence.
Email: ipkim@icp.ac.ru
Russian Federation, Chernogolovka, Moscow oblast, 142432
V. G. Kuryavyi
Institute of Chemistry, Far East Division
Email: ipkim@icp.ac.ru
Russian Federation, Vladivostok, 690102
V. A. Benderskii
Institute of Problems of Chemical Physics
Email: ipkim@icp.ac.ru
Russian Federation, Chernogolovka, Moscow oblast, 142432
Supplementary files
