Drying of colloidal solutions of fluoroalkyl oligomers


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The change in the supramolecular structure upon drying (solvent removal) of colloidal solutions of fluoroalkyl oligomers at atmospheric pressure has been studied using atomic force microscopy. In an initial colloidal solution, micrometer-sized particles of the dense phase consist of randomly oriented oligomers in the form of rigid rods of a 3–5 nm length forming a porous framework filled with solvent molecules, which solvate the oligomer chains. The drying-induced capillary pressure, which in nanosized pores is of the same order of magnitude as the solvation energy, leads to framework deformation, collapse of the pores, and the formation of lamellar and dendritic structures on a 50–100 nm scale. The ordering of these structures (formation of blocks of parallel oriented fibers typical of a fluoroplastic) increases as the heat-treatment temperature and the drying rate are increased, increasing the roughness of the surface (ratio of real to smooth surface area) and its hydrophobicity.

Sobre autores

I. Kim

Institute of Problems of Chemical Physics

Autor responsável pela correspondência
Email: ipkim@icp.ac.ru
Rússia, Chernogolovka, Moscow oblast, 142432

V. Kuryavyi

Institute of Chemistry, Far East Division

Email: ipkim@icp.ac.ru
Rússia, Vladivostok, 690102

V. Benderskii

Institute of Problems of Chemical Physics

Email: ipkim@icp.ac.ru
Rússia, Chernogolovka, Moscow oblast, 142432

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017