Carbon isotope type-curves of organic matter in sediments of the Laptev Sea (seep area)
- Authors: Sevastyanov V.S.1, Fedulova V.Y.1, Kuznetsova O.V.1, Dushenko N.V.1, Fedulov V.S.1, Bazhanova A.E.2
-
Affiliations:
- Vernadsky institute of geochemistry and analytical chemistry
- Center for petroleum science and engineering (CPSE), Skolkovo institute of science and technology (Skoltech)
- Issue: Vol 70, No 3 (2025)
- Pages: 227-237
- Section: Articles
- URL: https://bakhtiniada.ru/0016-7525/article/view/305581
- DOI: https://doi.org/10.31857/S0016752525030048
- EDN: https://elibrary.ru/fxtvlq
- ID: 305581
Cite item
Abstract
Organic carbon content combined with organic carbon isotope composition have been applied for the study of organic matter transformation in marine sediments during upward gas migration at seep areas of the Laptev Sea. Organic matter extracted from marine sediments was separated into five fractions (hexane, hexane-benzene, benzene, benzene-methanol, asphaltenes) using solvents of increasing polarity. It has been shown that in the seep the destruction of asphaltenes fractions leads to enrichment of benzene-methanol fraction by isotope-light components. δ13C values of benzene-methanol fractions were much lower than δ13C values of asphaltenes fractions and were associated with the accumulation of bacterial biomass in the sediments core through which the upward methane flow was passed. The organic matter of seep area sediment cores can be classified by two clusters, according to δ13C values of benzene fractions of organic matter. The first cluster center was in the surface layer (about 10 cm) of marine sediments. The second cluster center was in a deeper sediment layer. The difference in carbon isotope composition between the cluster centers was 2–3 ‰. The use of carbon isotope type-curves for different horizons of a sediment core has enabled a better understanding of the biological effects related to upward gas migration in seep areas of the Arctic Seas.
About the authors
V. S. Sevastyanov
Vernadsky institute of geochemistry and analytical chemistry
Email: vsev@geokhi.ru
Kosygina, 19, Moscow, 119991 Russia
V. Y. Fedulova
Vernadsky institute of geochemistry and analytical chemistry
Email: vsev@geokhi.ru
Kosygina, 19, Moscow, 119991 Russia
O. V. Kuznetsova
Vernadsky institute of geochemistry and analytical chemistry
Email: vsev@geokhi.ru
Kosygina, 19, Moscow, 119991 Russia
N. V. Dushenko
Vernadsky institute of geochemistry and analytical chemistry
Email: vsev@geokhi.ru
Kosygina, 19, Moscow, 119991 Russia
V. S. Fedulov
Vernadsky institute of geochemistry and analytical chemistry
Email: vsev@geokhi.ru
Kosygina, 19, Moscow, 119991 Russia
A. E. Bazhanova
Center for petroleum science and engineering (CPSE), Skolkovo institute of science and technology (Skoltech)
Author for correspondence.
Email: vsev@geokhi.ru
Bolshoy Boulevard (Skolkovo innovation center), 30, bld. 1, Moscow, 121205 Russia
References
- Баранов Б.В., Лобковский Л.И., Дозорова К.А., Цуканов Н.В. (2019) Система разломов, контролирующих метановые сипы на шельфе моря Лаптевых. Доклады Академии наук. 486(3), 354–358. https://doi.org/10.31857/S0869-56524863354-358
- Ветров А.А., Семилетов И.П., Дударев О.В., Пересыпкин В.И., Чаркин А.Н. (2008) Исследование состава и генезиса органического вещества донных осадков Восточно-Сибирского моря. Геохимия. (2), 183–195.
- Vetrov A.A., Semiletov I.P., Dudarev O.V., Peresypkin V.I., Charkin A.N. (2008) Composition and genesis of the organic matter in the bottom sediments of the East Siberian Sea. Geochem. Int. 46(2), 156–167. https://doi.org/10.1134/S0016702908020055
- Галимов Э.М., Севастьянов В.С., Карпов Г.А., Камалеева А.И., Кузнецова О.В., Коноплева И.В., Власо- ва Л.Н. (2015) Углеводороды из вулканического района. Нефтепроявления в кальдере вулкана Узон на Камчатке. Геохимия. (12), 1059–1068.
- Galimov E.M., Sevastyanov V.S., Karpov G.A., Kamaleeva A.I., Kuznetsova O.V., Konopleva I.V., Vlasova L.N. (2015) Hydrocarbons from a volcanic area. Oil seeps in the Uzon caldera, Kamchatka. Geochem. Int. 53(12), 1019–1027. https://doi.org/10.1134/S0016702915120046
- Гринько А.А., Гончаров И.В., Шахова Н.Е., Густафссон О., Обласов Н.В., Романкевич Е.А., Зарубин А.Г., Кашапов Р.С., Гершелис Е.В., Дударев О.В., Мазу- ров А.К., Семилетов И.П., Черных Д.В. (2020) Характерные особенности молекулярного состава органического вещества осадков Моря Лаптевых в районах аномального выброса метана. Геология и геофизика. 61(4), 560–585.
- Петрова В.И., Батова Г.И., Куршева А.В., Литвиненко И.В. (2010) Геохимия органического вещества донных отложений Центрально-Арктических поднятий Северного Ледовитого океана. Геология и геофизика. 51(1), 113–125.
- Севастьянов В.С., Федулов В.С., Федулова В.Ю., Кузнецова О.В., Душенко Н.В., Наймушин С.Г., Стенников А.В., Кривенко А.П. (2019) Изотопно-геохимические исследования органического вещества морских осадков от дельты реки Индигирки до границы постоянных льдов в Восточно-Сибирском море. Геохимия. 64(5), 451–459.
- Sevastyanov V.S., Fedulov V.S., Fedulova V.Yu., Kuznetsova O.V., Dushenko N.V., Naimushin S.G., Stennikov A.V., Krivenko A.P. (2019) Isotopic and geochemical study of organic matter in marine sediments from the Indigirka delta to the ice shelf border of the East-Siberian Sea. Geochem. Int. 57(5), 489–498. https://doi.org/10.1134/S0016702919050100
- Севастьянов В.С., Федулова В.Ю., Стенников А.В., Кузнецова О.В., Наймушин С.Г., Душенко Н.В., Кривенко А.П. (2021) Особенности распределения газов в верхнем слое осадков в системе континентальный шельф моря Лаптевых – Ледовитый океан. Океанология. 61 (4), 472–487.
- Фрид А.М., Банникова Л.А. (1990) Влияние термического и окислительного воздействия на изотопный состав углерода фракций органического вещества (по экспериментальным данным). Геохимия. (6), 771–782.
- Frid A.M., Bannikova L.A. (1991) Effects of heat and oxidation on the carbon-isotope composition of organic-matter fractions. Geochem. Int. 28, 1–11.
- Baranov B., Galkin S., Vedenin A., Dozorova K., Gebruk A., Flint M. (2020) Methane seeps on the outer shelf of the Laptev Sea: characteristic features, structural control, and benthic fauna. Geo-Mar. Lett. 40, 541–557. https://doi.org/10.1007/s00367-020-00655-7
- Bindoff N.L., Cheung W.W.L., Kairo J.G. (2022) Changing Ocean, Marine Ecosystems, and Dependent Communities. The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change. (Ed. by Portner H.-O., Roberts D.C., Masson-Delmotte V., Zhai P.) Cambridge University Press, Cambridge, 447–588. https://doi.org/10.1017/9781009157964.007
- Cheng L., Abraham J., Trenberth K.E., Fasullo J., Boyer T., Mann M.E., Zhu J., Wang F., Locarnini R., Li Y., Zhang B., Yu F., Wan L., Chen X., Feng L., Song X., Liu Y., Reseghetti F., Simoncelli S., Gouretski V., Chen G., Mishonov A., Reagan J., Li G. (2023) Another year of record heat for the oceans. Adv. Atmos. Sci. 40, 963–974. https://doi.org/10.1007/s00376-023-2385–2
- Chuang M., Riedinger N., Mogollуn J.M., Jorgen- sen B.B. (2018) Global diffusive fluxes of methane in marine sediments. Nature Geosci. 11, 421–425. https://doi.org/10.1038/s41561-018-0122–8
- Chuang P.-C., Yang T.F., Wallmann K., Matsumoto R., Hu C.-Y., Chen H.-W., Lin S., Sun C.-H., Li H.-C., Wang Y., Dale A.W. (2019) Carbon isotope exchange during anaerobic oxidation of methane (AOM) in sediments of the northeastern South China Sea. Geochim. Cosmochim. Acta. 246, 138–155. https://doi.org/10.1016/j.gca.2018.11.003
- Derrien M., Jeanneau L., Jarde E., Hur J., Kim S. (2023) Exploration of changes in the chemical composition of sedimentary organic matter and the underlying processes during biodegradation through advanced analytical techniques. Environ. Chem. 20, 212–225. https://doi.org/10.1071/EN23083
- Douglas P.M.J., Stolper D.A., Smith D.A., Walter Anthony K.M., Paull C.K., Dallimore S., Wik M., Crill P.M., Winterdahl M., Eiler J.M., Sessions A.L. (2016) Diverse origins of Arctic and Subarctic methane point source emissions identified with multiply-substituted isotopologues. Geochim. Cosmochim. Acta. 188, 163–188. https://doi.org/10.1016/j.gca.2016.05.031
- Drachev S.S., Savostin L.A., Grochev V.G., Bruni I.E. (1998) Structure and geology of the continental shelf of the Laptev Sea, Eastern Russian Arctic. Tectonophysics. 298, 357–393. https://doi.org/10.1016/S0040-1951(98)00159-0
- Galimov E.M. (1995) Fractionation of carbon isotopes on the way from living to fossil organic matter. Stable isotopes in the biosphere (Ed. by E. Wada, T. Yoneyama, M. Minagawa, T. Ando, B.D. Fry) Kyoto university press, Japan, 133–170.
- Galimov E.M. (2006) Isotope organic geochemistry. Org. Geochem. 37, 1200–1262. https://doi.org/10.1016/j.orggeochem.2006.04.009
- Knies J., Nowacyk N., Muller C., Vogt C., Stein R. (2000) A multiproxy approach to reconstruct the environmental changes along the Eurasian continental margin over the last 150 000 years. Mar. Geol. 163, 317–344. https://doi.org/10.1016/S0025-3227(99)00106-1
- Kravchishina M.D., Lein A.Yu., Flint M.V., Bara- nov B.V., Miroshnikov A.Yu., Dubinina E.O., Dara O.M., Boev A.G., Savvichev A.S. (2021) Methane-derived authigenic carbonates on the seafloor of the Laptev Sea shelf. Front. Mar. Sci. 8, 690304. https://doi.org/10.3389/fmars.2021.690304
- Kvamme B., Vasilev A. (2023) Danube Fan and Nyegga – the largest contrast European gas hydrate deposits for CO2 storing and CH4 and H2 production. Int. J. Greenh. Gas Control. 130, 104014. https://doi.org/10.1016/j.ijggc.2023.104014
- Lein A.Yu., Pimenov N.V., Galchenko V.F. (1997) Bacterial chemosynthesis and methanotrophy in the Manus and Lau basins ecosystems. Mar. Geol. 142, 47–56. https://doi.org/10.1016/S0025-3227(97)00040-6
- Liu J., Liu Q., Zhu D., Meng Q., Huang X. (2019) The function and impact of deep fluid on the organic matter during the hydrogeneration and evolution process. Nat. Gas Geosci. 4, 231–244. https://doi.org/10.1016/ j.jnggs.2019.07.002
- Meister P., Reyes C. (2019) The carbon-isotope record of the sub-seafloor biosphere. Geosciences 9, 507. https://doi.org/10.3390/geosciences9120507
- Miller G.H., Brigham-Grette J., Alley R.B., Anderson L., Bauch H.A., Douglas M.S.V., Edwards M.E., Elias S.A., Finney B.P., Fitzpatrick J.J., Funder S.V., Herbert T.D., Hinzman L.D., Kaufman D.S., MacDonald G.M., Polyak L., Robock A., Serreze M.C., Smol J.P., Spielhagen R., White J.W.C., Wolfe A.P., Wolff E.W. (2010) Temperature and precipitation history of the Arctic. Quat. Sci. Rev. 29, 1679–1715. https://doi.org/10.1016/j.quascirev.2010.03.001
- Morimoto S., Goto D., Murayama S., Fujita R., Tohjima Y., Ishidoya S., Machida T., Inai Y., Patra P.K., Maksyutov S., Ito A., Aoki S. (2021) Spatio-temporal variations of the atmospheric greenhouse gases and their sources and sinks in the Arctic region. Polar Sci. 27, 100553. https://doi.org/10.1016/j.polar.2020.100553
- Pankratova N.V., Belikov I.B., Kopeikin V.M., Skoro-khod A.I., Shtabkin Yu.A., Malafeev G.V., Flint M.V. (2020) Concentration and isotopic composition of methane, associated gases, and black carbon over Russian Arctic seas (shipborne measurements). Mar. Chem. 60, 593–602. https://doi.org/10.1134/S0001437020050197
- Peng W., Zhang L., Tumiati S., Brovarone A.V., Hu H., Cai Y., Shen T. (2021) Abiotic methane generation through reduction of serpentinite-hosted dolomite: Implications for carbon mobility in subduction zones. Geochim. Cosmochim. Acta. 311, 119–140. https://doi.org/10.1016/j.gca.2021.07.033
- Pimenov N.V., Savvichev A.S., Rusanov I.I., Lein A.Yu., Ivanov M.V. (2000) Microbiological processes of the carbon and sulfur cycles at cold methane seeps of the North Atlantic. Microbiology. 69, 709–721. https://doi.org/10.1023/A:1026666527034
- Savvichev A.S., Rusanov I.I., Kadnikov V.V., Beletsky A.V., Zakcharova E.E., Samylina O.S., Sigalevich P.A., Semiletov I.P., Ravin N.V., Pimenov N.V. (2023) Biogeochemical activity of methane-related microbial communities in bottom sediments of cold seeps of the Laptev Sea. Microorganisms. 11, 250. https://doi.org/10.3390/microorganisms11020250
- Shakhova N., Semiletov I., Sergienko V., Lobkovsky L., Yusupov V., Salyuk A., Salomatin A., Chernykh D., Kosmach D., Panteleev G., Nicolsky D., Samarkin V., Joye S., Charkin A., Dudarev O., Meluzov A., Gustafs-son O. (2015) The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice. Phil. Trans. R. Soc. A. 373, 20140451. https://doi.org/10.1098/rsta.2014.0451
- Shindell D.T., Faluvegi G., Koch D.M., Schmidt G.A., Unger N., Bauer S.E. (2009) Improved attribution of climate forcing to emissions. Science. 326, 716–718. https://doi.org/10.1126/science.1174760
- Sparkes R.B., Selver A.D., Gustafsson Ö., Semiletov I.P., Haghipour N., Wacker L., Eglinton T.I., Talbot H.M., van Dongen B.E. (2016) Macromolecular composition of terrestrial and marine organic matter in sediments across the East Siberian Arctic shelf. The Cryosphere. 10, 2485–2500. https://doi.org/10.5194/tc-10-2485-2016
- Stein R., Boucsein B., Fahl K., Garcia de Oteyza T., Knies J., Niessen F. (2001) Accumulation of particulate organic carbon at the Eurasian continental margin during late Quaternary times: controlling mechanisms and paleoenvironmental significance. Glob. Planet. Change. 31, 87–104. https://doi.org/10.1016/S0921-8181(01)00114-X
- Vetrov A.A., Romankevich E.A. (2004) Carbon cycle in the Russian Arctic seas. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06208-1
- Yu M., Eglinton T.I., Haghipour N., Montlucon D.B., Wacker L., Hou P., Ding Y., Zhao M. (2021) Contrasting fates of terrestrial organic carbon pools inmarginal sea sediments. Geochim. Cosmochim. Acta. 309, 16–30. https://doi.org/10.1016/j.gca.2021.06.018
Supplementary files
