The role of biochemical processes in formation of waters and bottom sediments after reduction of anthropogenic pollution
- Autores: Moiseenko T.I.1, Leummens E.O.1
-
Afiliações:
- Vernadsky Institute of Geochemistry and Analytical Chemistry RAN
- Edição: Volume 69, Nº 1 (2024)
- Páginas: 77-90
- Seção: Articles
- URL: https://bakhtiniada.ru/0016-7525/article/view/259996
- DOI: https://doi.org/10.31857/S0016752524010062
- EDN: https://elibrary.ru/MSLQHM
- ID: 259996
Citar
Resumo
The article is devoted to anthropogenic and biogeochemical processes that affect the water and bottom sediment (BS) formation of the subarctic Lake Imandra. The data of long-term observations were presented, showing changes in the water chemical composition during the period of maximum pollution and after decrease in anthropogenic load within the last 30 years. It was found that the content of toxic metals in water decreased, but due to climate warming, the input of organic matter and nutrients increased, which stimulated an increase in the intensity of production processes. Enrichment of water during the period of intensive heavy metal pollution led to their accumulation in bottom sediments (BS); the highest metal concentrations detected in the surface layers, which belong to the modern period of sedimentation. The development of oxygen-free conditions in bottom horizons due to sedimentation and oxidation of organic matter, which leads to metal cycling that prevents their burial was shown. Physicochemical and biogeochemical processes are considered as explaining the diffusion of metals to the surface of bottom sediments and the formation anomalously high concentrations of metals in the surface layers of BS. The hypothesis of the appearance of the diagenesis initial stage in bottom sediments was proposed.
Palavras-chave
Texto integral

Sobre autores
T. Moiseenko
Vernadsky Institute of Geochemistry and Analytical Chemistry RAN
Autor responsável pela correspondência
Email: moiseenko@geokhi.ru
Rússia, Kosygin st., 19, Moscow, 119991
E. Leummens
Vernadsky Institute of Geochemistry and Analytical Chemistry RAN
Email: moiseenko@geokhi.ru
Rússia, Kosygin st., 19, Moscow, 119991
Bibliografia
- Dauvalter V. A. (2020) Geochemistry of Lakes in a Zone Impacted by an Arctic Iron-Producing Enterprise. Geochem. Int., 58 (8), 933–946. doi: 10.1134/S0016702920080042
- Il’yashuk B.P. (2001) Iron-manganese nodules in lake soils as a factor limiting the development of zoobenthos communities. Ekologiya, (6) 478–480 [in Russian].
- Kokryatskaya N. M., Shevchenko V. P., Titova K. V., Vahrameeva E. A., Aliev R. A., Grigor'ev V.A., Savel'eva L.A., Maksimov F. E., Kuznecov V.Ju. (2020) Early diagenesis of bottom sediments of freshwater lakes of the Vaygach island. Arctic and Antarctic Research, 66 (4), 534–554. doi: 10.30758/0555-2648-2020-66-4-534-554
- Leonova G. A., Mal'tsev A.E., Miroshnichenko L. V., Bobrov V. A., Melenevskii V. N., Kondrat'eva L.M. (2018) Geochemistry of diagenesis of organogenic sediments: an example of small lakes in Southern West Siberia and Western Baikal area. Geochem. Int., 56(4), 344–361. doi: 10.1134/S0016702918040043
- Mal'cev A.E., Leonova G. A., Bobrov V. A., Krivonogov S. K. (2019) Geochemistry of Holocene sapropels from small lakes in the south of Western Siberia and Eastern Pribaikalia. Novosibirsk, Geo Academic Publishing House, 444 pp. [in Russian].
- Mal'cev A.E., Leonova G. A., Bobrov V. A., Vosel' Ju.S., Shavekin A. S. (2018) Fe, Mn, N, and S as geochemical indicators of diagenesis (on the example of bottom sediments of Lake Kotokel, Eastern Pribaikalie). Reports of IX Siberian Conference of Young Scientists on Earth Sciences. Novosibirsk: IPC NGU, 740 pp. [in Russian].
- Moiseenko T. I., Dauval'ter T.I., Rodjushkin T. I. (1997) Geochemical migration of elements in a subarctic lake (on the example of Lake Imandra). Apatity, RAS’s Kola Science Centre, 127 pp. [in Russian].
- Moiseenko T. I., Dauval'ter V.A., Il'yashuk B.P., Kagan L.Ya., Il'yashuk E.A. (2000) Paleoecological reconstruction of anthropogenic load. Far Eastern Branch, RAS, 370 (1), 115–118 [in Russian].
- Moiseenko T. I., Dauval'ter V.A., Lukin A. A., Kudryavceva L. P., Il'yaschuk B.P., Il'yaschuk L.I., Sandimirov S. S., Kagan L.Ya., Vandysh O. I., Sharov A. N., Sharova Ju.N., Koroleva I. N. (2002) Anthropogenic modifications of the Lake Imandra ecosystem. M.: Nauka (Nauka St. Petersburg Printing House), 402 pp. [in Russian].
- Moiseenko T. I., Denisov D. B. (2019) Is it possible to restore the Arctic lake ecosystems after long-term pollution? Arctic: ecology and economy, 4 (36), 16–25 [in Russian]. doi: 10.25283/2223-4594-2019-4-16-25
- Moiseenko T. I., Razumovskii L. V., Gashkina N. A., Shevchenko A. V., Razumovskii V. L., Mashukov A. S., Horoshavin V.Ju. (2012) Paleoecological studies of mountain lakes. Water Resources, 39 (5), 543–557.
- Semenovich N. I. (1940) Hydrological studies of Lake Imandra in 1930. (1940) Materials for the study of water bodies of the Kola Peninsula. Manuscript. USSR RAS Kola Science Centre Fonds. Apatity. 1, 406 pp. [in Russian].
- Tatsii Y. G., Moiseenko T. I., Borisov A. P., Baranov D. Y., Razumovskii L. V., Khoroshavin V. Y. (2020) Bottom sediments of the West Siberian arctic lakes as indicators of environmental changes. Geochem. Int., 58 (4), 408–422. doi: 10.1134/S0016702920040114
- Chizhikov V. V. (1980) Hydrochemistry and bottom sediments of Lake Imandra. Ecosystem of Lake Imandra under the influence of anthropogenic pollution. Apatity, pp. 24–67. [in Russian].
- Battarbee R. W., Thompson R., Catalan J., Grytnes J.-A. & Birks H. J.B. (2002) Climate variability and ecosystem dynamics of remote alpine and arctic lakes: the MOLAR project. J. Paleolimnology, 28, 1–6. doi: 10.1023/A:1020342316326
- Berglund B. E. (2003) Handbook of Holocene: Palaeoecology and Palaeohydrology. The Blackburn Press, 869 pp.
- Chen M., Ding S., Wu Y., Fan X., Jin Z., Tsang D. C. W., Wang Y., Zhang C. (2019). Phosphorus mobilization in lake sediments: Experimental evidence of strong control by iron and negligible influences of manganese redox reactions. Environmental Pollution, 246, 472–481. doi: 10.1016/j.envpol.2018.12.031
- Dauvalter V., Moiseenko T., Kagan L. (2001) Global change in respect to tendency to acidification of subarctic mountain lakes. Visconti G. et al. (eds.) Global Change and Protected Areas. Advances in Global Change Research, 9. Springer, Dordrecht. 187–194.
- Eaton A., Arnold E., Archie A. E., Rice E. W., Clesceri L. S. (1992) Standard Methods for the Examination of Water and Wastewater, 17th edn; American Public Health Association (APHA): Washington, DC, USA.
- Hongve D. (1997) Cycling of iron, manganese, and phosphate in a meromictic lake. Limnol Ocemogr., 42 (4), 635–647. doi: 10.4319/lo.1997.42.4.0635
- Li J., Şengör S. S. (2020) Biogeochemical cycling of heavy metals in lake sediments: impact of multispecies diffusion and electrostatic effects. Comput. Geosci., 24 (17), 1–20. doi: 10.1007/s10596-019-09915-7
- Maltsev A., Safonov A., Leonova G., Krivonogov S. (2022). Role of microorganisms in destruction of organic matter and processes of diagenetic mineral formation in the sediments of Western Siberia lakes. Conference: Water and environmental problems of Siberia and Central Asia: Russia, Barnaul, Institute for water and environmental problems.
- Marianne R. P., Douglas S. V., Smol J. P., Leonova G. A., Bobrov V. A. (2012) Long-term Environmental Change in Arctic and Antarctic Lakes Geochemical Role of Plankton from Continental Water Bodies of Siberia in Accumulation and Bio-Sedimentation of Trace Elements. Novosibirsk, Geo, 308 pp.
- Matisoff G., Carson M. L. (2014) Sediment resuspension in the Lake Erie nearshore. Journal of Great Lakes Research, 40 (3), 532–540. doi: 10.1016/j.jglr.2014.02.001
- Matisoff G., Watson S. B., Guo J., Duewiger A., Steely R. (2017). Sediment and nutrient distribution and resuspension in Lake Winnipeg. Science of The Total Environment, 575, 173–186. doi: 10.1016/j.scitotenv.2016.09.227
- Moiseenko T. I. (1999). A fate of metals in Arctic surface waters. Method for defining critical levels. Sci. Tot. Environ., 236 (1–3), 19–39. doi: 10.1016/S0048-9697(99)00280-6
- Moiseenko T., Sharov A. (2019) Large Russian lakes Ladoga, Onega, and Imandra under strong pollution and in the period of revitalization: a review. Geosciences. 9 (12), p. 492. doi: 10.3390/geosciences9120492
- Newsome L., Arguedas A., Coker V. S., Boothman C. & Lloyd J. R. (2020). Manganese and cobalt redox cycling in laterites; Biogeochemical and bioprocessing implications. Chemical Geology, 531, 119330. doi: 10.1016/j.chemgeo.2019.119330
- Osleger D. A., Zierenberg R. A., Suchanek T. H., Stoner J. S., Morgan S., Adam D. P. (2008) Clear Lake Sediments: Anthropogenic Changes inPhysical Sedimentology and Magnetic Response. Ecological Applications. 18 (8), Supplement (Dedicated Special Issue: Mercury Cycling and Bioaccumulation in Clear Lake): A239-A256. doi: 10.1890/06-1469.1
Arquivos suplementares
