Genetic Approaches in Pluripotent Stem Cell Studies and Practical Applications
- Autores: Kuzmin A.A1, Sinenko S.A1, Bakhmet E.I1, Fotina A.S1, Ermakova V.V1, Tomilin A.N1
-
Afiliações:
- Institute of Cytology of the Russian Academy of Sciences
- Edição: Volume 61, Nº 11 (2025)
- Páginas: 128–146
- Seção: ГЕНЕТИКА ЧЕЛОВЕКА
- URL: https://bakhtiniada.ru/0016-6758/article/view/361193
- DOI: https://doi.org/10.7868/S3034510325110154
- ID: 361193
Citar
Resumo
Palavras-chave
Sobre autores
A. Kuzmin
Institute of Cytology of the Russian Academy of SciencesSt. Petersburg, Russia
S. Sinenko
Institute of Cytology of the Russian Academy of SciencesSt. Petersburg, Russia
E. Bakhmet
Institute of Cytology of the Russian Academy of SciencesSt. Petersburg, Russia
A. Fotina
Institute of Cytology of the Russian Academy of SciencesSt. Petersburg, ussia
V. Ermakova
Institute of Cytology of the Russian Academy of SciencesSt. Petersburg, Russia
A. Tomilin
Institute of Cytology of the Russian Academy of Sciences
Email: a.tomilin@incras.ru
St. Petersburg, Russia
Bibliografia
- Evans M.J., Kaufman M.H. Establishment in culture of pluripotential cells from mouse embryos // Nature. 1981. V. 292. № 5819. P. 154–156. https://doi.org/10.1038/292154a0
- Martin G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells // PNAS USA. 1981. V. 78. № 12. P. 7634–7638. https://doi.org/10.1073/pnas.78.12.7634
- Gordeev M.N., Bakhmet E.I., Tomilin A.N. Pluripotency dynamics during embryogenesis and in cell culture // Russ. J. Dev. Biol. 2021. V. 52. № 6. P. 379–389. https://doi.org/10.1134/s1062360421060059
- Thomas K.R., Capecchi M.R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells // Cell. 1987. V. 51. № 3. P. 503–512. https://doi.org/10.1016/0092-8674(87)90646-5
- Knott G.J., Doudna J.A. CRISPR-Cas guides the future of genetic engineering // Sci. 2018. V. 361. № 6405. P. 866–869. https://doi.org/10.1126/science.aat5011
- Thomson J.A., Itskovitz-Eldor J., Shapiro S.S. et al. Embryonic stem cell lines derived from human blastocysts // Science. 1998. V. 282. № 5391. P. 1145–1147. https://doi.org/10.1126/science.282.5391.1145
- Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors // Cell. 2006. V. 126. № 4. P. 663–676. https://doi.org/10.1016/j.cell.2006.07.024
- Takahashi K., Tanabe K., Ohnuki M. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors // Cell. 2007. V. 131. № 5. P. 861–872. https://doi.org/10.1016/J.CELL.2007.11.019
- Cyranoski D. “Reprogrammed” stem cells approved to mend human hearts for the first time news /631/532 // Nature. 2018. V. 557. № 7707. P. 619–620. https://doi.org/10.1038/d41586-018-05278-8
- Young C.S., Hicks M.R., Ermolova N.V. et al. A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells // Cell Stem Cell. 2016. V. 18. № 4. P. 533–540. https://doi.org/10.1016/j.stem.2016.01.021
- Hoang D.M., Pham P.T., Bach T.Q. et al. Stem cellbased therapy for human diseases // Signal Transduct. Target Ther. 2022. V. 7. № 1. P. 272. https://doi.org/10.1038/s41392-022-01134-4
- Ortuño-Costela M.D.C., Cerrada V., García-López M., Gallardo M.E. The challenge of bringing iPSCs to the patient // Int. J. Mol. Sci. 2019. V. 20. № 24. https://doi.org/10.3390/ijms20246305
- Pfeifer A., Ikawa M., Dayn Y., Verma I.M. Transgenesis by lentiviral vectors: Lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos // PNAS USA. 2002. V. 99. № 4. P. 2140–2145. https://doi.org/10.1073/pnas.251682798
- Hamaguchi I., Woods N.B., Panagopoulos I. et al. Lentivirus vector gene expression during ES cell-derived hematopoietic development in vitro // J. Virol. 2000. V. 74. № 22. https://doi.org/10.1128/jvi.74.22.10778-10784.2000
- Asano T., Hanazono Y., Ueda Y. et al. Highly efficient gene transfer into primate embryonic stem cells with a simian with a lentivirus vector // Mol. Therapy. 2002. V. 6. № 2. P. 162–168. https://doi.org/10.1006/mthe.2002.0655
- Ivics Z., Hackett P.B., Plasterk R.H., Izsvák Z. Molecular reconstruction of sleeping beauty, a Tc1-like transposon from fish, and its transposition in human cells // Cell. 1997. V. 91. № 4. P. 501–510. https://doi.org/10.1016/S0092-8674(00)80436-5
- Ivics Z., Li M.A., Mátés L. et al. Transposon-mediated genome manipulation in vertebrates // Nat. Methods. 2009. V. 6. № 6. P. 415–422. https://doi.org/10.1038/nmeth.1332
- Woltjen K., Michael I.P., Mohseni P. et al. PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells // Nature. 2009. V. 458. № 7239. P. 766–770. https://doi.org/10.1038/nature07863
- Yusa K., Rad R., Takeda J., Bradley A. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon // Nat. Methods. 2009. V. 6. № 5. P. 363–369. https://doi.org/10.1038/nmeth.1323
- Rostovskaya M., Fu J., Obst M. et al. Transposon-mediated BAC transgenesis in human ES cells // Nucl. Ac. Res. 2012. V. 40. № 19. e150. https://doi.org/10.1093/nar/gks643
- Bhaya D., Davison M., Barrangou R. CRISPR-cas systems in bacteria and archaea: Versatile small RNAs for adaptive defense and regulation // Annu. Rev. Genet. 2011. V. 45. P. 273–297. https://doi.org/10.1146/annurev-genet-110410-132430
- Jinek M., Chylinski K., Fonfara I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity // Science. 2012. V. 337. № 6096. P. 816–821. https://doi.org/10.1126/science.1225829
- Zetsche B., Gootenberg J.S., Abudayyeh O.O. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system // Cell. 2015. V. 163. № 3. P. 759–771. https://doi.org/10.1016/j.cell.2015.09.038
- Mao Z., Bozzella M., Seluanov A., Gorbunova V. Comparison of nonhomologous end joining and homologous recombination in human cells // DNA Repair (Amst.). 2008. V. 7. № 10. P. 1765–1771. https://doi.org/10.1016/j.dnarep.2008.06.018
- Sfeir A., Symington L.S. Microhomology-mediated end joining: A back-up survival mechanism or dedicated pathway? // Trends Biochem. Sci. 2015. V. 40. № 11. P. 701–714. https://doi.org/10.1016/j.tibs.2015.08.006
- Ran F.A., Hsu P.D., Wright J. et al. Genome engineering using the CRISPR-Cas9 system // Nat. Protoc. 2013. V. 8. № 11. P. 2281–2308. https://doi.org/10.1038/nprot.2013.143
- Saleh-Gohari N., Helleday T. Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle un human cells // Nucl. Ac. Res. 2004. V. 32. № 12. P. 3683–3688. https://doi.org/10.1093/nar/gkh703
- Pardo B., Gómez-González B., Aguilera A. DNA repair in mammalian cells: DNA double-strand break repair: how to fix a broken relationship // Cell Mol. Life Sci. 2009. V. 66. № 6. P. 1039–1056. https://doi.org/10.1007/s00018-009-8740-3
- Yang H., Ren S., Yu S. et al. Methods favoring homology-directed repair choice in response to CRISPR/ Cas9 induced-double strand breaks // Int. J. Mol. Sci. 2020. V. 21. № 18. https://doi.org/10.3390/ijms21186461
- Miyaoka Y., Mayerl S.J., Chan A.H., Conklin B.R. Detection and quantification of HDR and NHEJ induced by genome editing at endogenous gene loci u s i n g d r o p l e t d i g i t a l P C R / / Methods Mol. Biol. 2018. V. 1768. P. 349–362. https://doi.org/10.1007/978-1-4939-7778-9_20
- Vitale I., Manic G., De Maria R. et al. DNA damage in stem cells // Mol. Cell. 2017. V. 66. № 3. P. 306–319. https://doi.org/10.1016/j.molcel.2017.04.006
- Reuven N., Shaul Y. Selecting for CRISPR-edited knock-in cells // Int. J. Mol. Sci. 2022. V. 23. № 19. https://doi.org/10.3390/ijms231911919
- Selvaraj S., Feist W.N., Viel S. et al. High-efficiency transgene integration by homology-directed repair in human primary cells using DNA-PKcs inhibition // Nat. Biotechnol. 2024. V. 42. № 5. P. 731–744. https://doi.org/10.1038/s41587-023-01888-4
- Singh A., Smedley G.D., Rose J.G. et al. A high efficiency precision genome editing method with CRISPR in iPSCs // Sci. Rep. 2024. V. 14. № 1. P. 9933. https://doi.org/10.1038/s41598-024-60766-4
- Yu C., Liu Y., Ma T. et al. Small molecules enhance crispr genome editing in pluripotent stem cells // Cell Stem Cell. 2015. V. 16. № 2. https://doi.org/10.1016/j.stem.2015.01.003
- Guo Q., Mintier G., Ma-Edmonds M. et al. “Cold shock” increases the frequency of homology directed repair gene editing in induced pluripotent stem cells // Sci. Rep. 2018. V. 8. № 1. P. 2080. https://doi.org/10.1038/s41598-018-20358-5
- Richardson C.D., Ray G.J., DeWitt M.A. et al. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA // Nat. Biotechnol. 2016. V. 34. № 3. P. 339–344. https://doi.org/10.1038/nbt.3481
- Liang X., Potter J., Kumar S. et al. Enhanced CRISPR/ Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA // J. Biotechnol. 2017. V. 241. P. 136–146. https://doi.org/10.1016/j.jbiotec.2016.11.011
- Anzalone A.V., Randolph P.B., Davis J.R. et al. Searchand-replace genome editing without double-strand breaks or donor DNA // Nature. 2019. V. 576. № 7785. P. 149–157. https://doi.org/10.1038/s41586-019-1711-4
- Li H., Busquets O., Verma Y. et al. Highly efficient generation of isogenic pluripotent stem cell models using prime editing // Elife. 2022. V. 11. https://doi.org/10.7554/eLife.79208
- Chen P.J., Hussmann J.A., Yan J. et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes // Cell. 2021. V. 184. № 22. P. 5635–5652.e29. https://doi.org/10.1016/j.cell.2021.09.018
- Wu Y., Zhong A., Sidharta M. et al. Robust and inducible genome editing via an all-in-one prime editor in human pluripotent stem cells // Nat. Commun. 2024. V. 15. № 1. P. 10824. https://doi.org/10.1038/s41467-024-55104-1
- Eggenschwiler R., Gschwendtberger T., Felski C. et al. A selectable all-in-one CRISPR prime editing piggyBac transposon allows for highly efficient gene editing in human cell lines // Sci. Rep. 2021. V. 11. № 1. P. 22154. https://doi.org/10.1038/s41598-021-01689-2
- Zheng C., Liu B., Dong X. et al. Template-jumping prime editing enables large insertion and exon rewriting in vivo // Nat. Commun. 2023. V. 14. № 1. P. 3369. https://doi.org/10.1038/s41467-023-39137-6
- Klompe S.E., Vo P.L.H., Halpin-Healy T.S., Sternberg S.H. Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration // Nature. 2019. V. 571. № 7764. P. 219–225. https://doi.org/10.1038/s41586-019-1323-z
- Lampe G.D., King R.T., Halpin-Healy T.S. et al. Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases // Nat. Biotechnol. 2024. V. 42. № 1. P. 87–98. https://doi.org/10.1038/s41587-023-01748-1
- Ye L., Chang J.C., Lin C. et al. Generation of induced pluripotent stem cells using site-specific integration with phage integrase // PNAS USA. 2010. V. 107. № 45. P. 19467–19472. https://doi.org/10.1073/pnas.1012677107
- Duportet X., Wroblewska L., Guye P. et al. A platform for rapid prototyping of synthetic gene networks in mammalian cells // Nucl. Ac. Res. 2014. V. 42. № 21. P. 13440–13451. https://doi.org/10.1093/nar/gku1082
- Rath P., Kramer P., Biggs D. et al. Optimizing approaches for targeted integration of transgenic cassettes by integrase-mediated cassette exchange in mouse and human stem cells // Stem Cells. 2025. V. 43. № 1. https://doi.org/10.1093/STMCLS/SXAE092
- Blanch-Asensio A., Grandela C., Brandão K.O. et al. STRAIGHT-IN enables high-throughput targeting of large DNA payloads in human pluripotent stem cells // Cell Rep. Meth. 2022. V. 2. № 10. https://doi.org/10.1016/j.crmeth.2022.100300
- Pandey S., Gao X.D., Krasnow N.A. et al. Efficient site-specific integration of large genes in mammalian cells via continuously evolved recombinases and prime editing // Nat. Biomed. Eng. 2024. V. 9. № 1. P. 22–39. https://doi.org/10.1038/s41551-024-01227-1
- Yarnall M.T.N., Ioannidi E.I., Schmitt-Ulms C. et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases // Nat. Biotechnol. 2023. V. 41. № 4. P. 500–512. https://doi.org/10.1038/s41587-022-01527-4
- Durrant M.G., Fanton A., Tycko J. et al. Systematic discovery of recombinases for efficient integration of large DNA sequences into the human genome // Nat. Biotechnol. 2023. V. 41. № 4. P. 488–499. https://doi.org/10.1038/s41587-022-01494-w
- Qi L.S., Larson M.H., Gilbert L.A. et al. Repurposing CRISPR as an RNA-γuided platform for sequence-specific control of gene expression // Cell. 2013. V. 152. № 5. P. 1173–1183. https://doi.org/10.1016/j.cell.2013.02.022
- O’Geen H., Bates S.L., Carter S.S. et al. Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner // Epigen. Chromat. 2019. V. 12. № 1. P. 26. https://doi.org/10.1186/s13072-019-0275-8
- Ziller M.J., Ortega J.A., Quinlan K.A. et al. Dissecting the Functional Consequences of De Novo DNA Methylation dynamics in human motor neuron differentiation and physiology // Cell Stem Cell. 2018. V. 22. № 4. P. 559–574.e9. https://doi.org/10.1016/j.stem.2018.02.012
- Perez-Pinera P., Kocak D.D., Vockley C.M. et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors // Nat. Methods. 2013. V. 10. № 10. P. 973–976. https://doi.org/10.1038/nmeth.2600
- Chavez A., Scheiman J., Vora S. et al. Highly efficient Cas9-mediated transcriptional programming // Nat. Methods. 2015. V. 12. № 4. P. 326–328. https://doi.org/10.1038/nmeth.3312
- Tanenbaum M.E., Gilbert L.A., Qi L.S. et al. A protein-tagging system for signal amplification in gene expression and fluorescence imaging // Cell. 2014. V. 159. № 3. P. 635–646. https://doi.org/10.1016/j.cell.2014.09.039
- Konermann S., Brigham M.D., Trevino A.E. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex // Nature. 2015. V. 517. № 7536. P. 583–588. https://doi.org/10.1038/nature14136
- Mandegar M.A., Huebsch N., Frolov E.B. et al. CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs // Cell Stem Cell. 2016. V. 18. № 4. P. 541–553. https://doi.org/10.1016/j.stem.2016.01.022
- Liu P., Chen M., Liu Y. et al. CRISPR-Based chromatin remodeling of the endogenous Oct4 or Sox2 locus enables reprogramming to pluripotency // Cell Stem Cell. 2018. V. 22. № 2. P. 252–261.e4. https://doi.org/10.1016/j.stem.2017.12.001
- Balboa D., Weltner J., Eurola S. et al. Conditionally stabilized dCas9 activator for controlling gene expression in human cell reprogramming and differentiation // Stem Cell Reports. 2015. V. 5. № 3. P. 448–459. https://doi.org/10.1016/j.stemcr.2015.08.001
- Wei S., Zou Q., Lai S. et al. Conversion of embryonic stem cells into extraembryonic lineages by CRISPR-mediated activators // Sci. Rep. 2016. V. 6. https://doi.org/10.1038/srep19648
- Chakraborty S., Ji H., Kabadi A.M. et al. A CRISPR/ Cas9-based system for reprogramming cell lineage specification // Stem Cell Reports. 2014. V. 3. № 6. P. 940–947. https://doi.org/10.1016/j.stemcr.2014.09.013
- Black J.B., Adler A.F., Wang H.G. et al. Targeted epigenetic remodeling of endogenous loci by CRISPR/ Cas9-Based transcriptional activators directly converts fibroblasts to neuronal cells // Cell Stem Cell. 2016. V. 19. № 3. P. 406–414. https://doi.org/10.1016/j.stem.2016.07.001
- Khoo T.S., Jamal R., Abdul Ghani N.A. et al. Retention of somatic memory associated with cell identity, age and metabolism in induced pluripotent stem (iPS) cells reprogramming // Stem Cell Rev. Rep. 2020. V. 16. № 2. P. 251–261. https://doi.org/10.1007/s12015-020-09956-x
- Blanco E., González-Ramírez M., Alcaine-Colet A. et al. The bivalent genome: Characterization, structure, and regulation // Trends Genet. 2020. V. 36. № 2. P. 118–131. https://doi.org/10.1016/j.tig.2019.11.004
- Nakamura M., Gao Y., Dominguez A.A., Qi L.S. CRISPR technologies for precise epigenome editing // Nat. Cell Biol. 2021. V. 23. № 1. P. 11–22. https://doi.org/10.1038/s41556-020-00620-7
- Gao X., Tsang J.C.H., Gaba F. et al. Comparison of TALE designer transcription factors and the CRISPR/ dCas9 in regulation of gene expression by targeting enhancers // Nucl. Ac. Res. 2014. V. 42. № 20. e155. https://doi.org/10.1093/nar/gku836
- Schoger E., Argyriou L., Zimmermann W.H. et al. Generation of homozygous CRISPRa human induced pluripotent stem cell (hiPSC) lines for sustained endogenous gene activation // Stem Cell Res. 2020. V. 48. https://doi.org/10.1016/j.scr.2020.101944
- Schoger E., Zimmermann W.H., Cyganek L., Zelarayán L.C. Establishment of two homozygous CRISPR interference (CRISPRi) knock-in human induced pluripotent stem cell (hiPSC) lines for titratable endogenous gene repression // Stem Cell Res. 2021. V. 55. https://doi.org/10.1016/j.scr.2021.102473
- Schuster A., Erasimus H., Fritah S. et al. RNAi/CRISPR screens: from a pool to a valid hit // Trends Biotechnol. 2019. V. 37. № 1. https://doi.org/10.1016/j.tibtech.2018.08.002
- Bock C., Datlinger P., Chardon F. et al. High-content CRISPR screening // Nat. Rev. Methods Primers. 2022. V. 2. № 1. P. 9. https://doi.org/10.1038/s43586-022-00098-7
- Li S., Zhang A., Xue H. et al. One-step piggyBac transposon-based CRISPR/Cas9 activation of multiple genes // Mol. Ther. Nucl. Ac. 2017. V. 8. P. 64–76. https://doi.org/10.1016/j.omtn.2017.06.007
- Tian R., Gachechiladze M.A., Ludwig C.H. et al. CRISPR interference-based platform for multimodal genetic screens in human iPSC-derived neurons // Neuron. 2019. V. 104. № 2. P. 239–255.e12. https://doi.org/10.1016/j.neuron.2019.07.014
- Friedman C.E., Nguyen Q., Lukowski S.W. et al. Single-cell transcriptomic analysis of cardiac differentiation from human PSCs reveals HOPX-dependent cardiomyocyte maturation // Cell Stem Cell. 2018. V. 23. № 4. P. 586–598.e8. https://doi.org/10.1016/j.stem.2018.09.009
- Eskildsen T.V., Ayoubi S., Thomassen M. et al. MESP1 knock-down in human iPSC attenuates early vascular progenitor cell differentiation after completed primitive streak specification // Dev. Biol. 2019. V. 445. № 1. P. 1–7. https://doi.org/10.1016/j.ydbio.2018.10.020
- Usluer S., Hallast P., Crepaldi L. et al. Optimized whole-genome CRISPR interference screens identify ARID1A-dependent growth regulators in human induced pluripotent stem cells // Stem Cell Reports. 2023. V. 18. № 5. P. 1061–1074. https://doi.org/10.1016/j.stemcr.2023.03.008
- Black J.B., McCutcheon S.R., Dube S. et al. Master regulators and cofactors of human neuronal cell fate specification identified by CRISPR gene activation screens // Cell Rep. 2020. V. 33. № 9. https://doi.org/10.1016/j.celrep.2020.108460
- Liu Y., Yu C., Daley T.P. et al. CRISPR activation screens systematically identify factors that drive neuronal fate and reprogramming // Cell Stem Cell. 2018. V. 23. № 5. P. 758–771.e8. https://doi.org/10.1016/j.stem.2018.09.003
- Yang J., Rajan S.S., Friedrich M.J. et al. Genome-scale CRISPRa screen identifies novel factors for cellular reprogramming // Stem Cell Reports. 2019. V. 12. № 4. P. 757–771. https://doi.org/10.1016/j.stemcr.2019.02.010
- Kakeda M., Nagata K., Osawa K. et al. A new chromosome 14-based human artificial chromosome (HAC) vector system for efficient transgene expression in human primary cells // Biochem. Biophys. Res. Commun. 2011. V. 415. № 3. P. 439–444. https://doi.org/10.1016/j.bbrc.2011.10.088
- Farr C.J., Stevanovic M., Thomson E.J. et al. Telomere-associated chromosome fragmentation: Applications in genome manipulation and analysis // Nat. Genet. 1992. V. 2. № 4. P. 275–282. https://doi.org/10.1038/ng1292-275
- Mills W., Critcher R., Lee C., Farr C.J. Generation of an ~2.4 Mb human X centromere-based minichromosome by targeted telomere-associated chromosome fragmentation in DT40 // Hum. Mol. Genet. 1999. V. 8. № 5. P. 751–761. https://doi.org/10.1093/HMG/8.5.751
- Kuroiwa Y., Tomizuka K., Shinohara T. et al. Manipulation of human minichromosomes to carry greater than megabase-sized chromosome inserts // Nat. Biotechnol. 2000. V. 18. № 10. P. 1086–1090. https://doi.org/10.1038/80287
- Shen M.H., Mee P.J., Nichols J. et al. A structurally defined mini-chromosome vector for the mouse germ line // Curr. Biol. 2000. V. 10. № 1. P. 31–34. https://doi.org/10.1016/S0960-9822(99)00261-4
- Kazuki Y., Oshimura M. Human artificial chromosomes for gene delivery and the development of animal models // Mol. Ther. 2011. V. 19. № 9. P. 1591–1601. https://doi.org/10.1038/mt.2011.136
- Kazuki Y., Hoshiya H., Takiguchi M. et al. Refined human artificial chromosome vectors for gene therapy and animal transgenesis // Gene Ther. 2011. V. 18. № 4. P. 384–393. https://doi.org/10.1038/gt.2010.147
- Katoh M., Ayabe F., Norikane S. et al. Construction of a novel human artificial chromosome vector for gene delivery // Biochem. Biophys. Res. Commun. 2004. V. 321. № 2. P. 280–290. https://doi.org/10.1016/j.bbrc.2004.06.145
- Hoshiya H., Kazuki Y., Abe S. et al. A highly stable and nonintegrated human artificial chromosome (HAC) containing the 2.4 Mb entire human dystrophin gene // Mol. Ther. 2009. V. 17. № 2. P. 309–317. https://doi.org/10.1038/mt.2008.253
- Yamaguchi S., Kazuki Y., Nakayama Y. et al. A method for producing transgenic cells using a multi-integrase system on a human artificial chromosome vector // PLoS One. 2011. V. 6. № 2. https://doi.org/10.1371/journal.pone.0017267
- Suda T., Katoh M., Hiratsuka M. et al. Heat-regulated production and secretion of insulin from a human artificial chromosome vector // Biochem. Biophys. Res. Commun. 2006. V. 340. № 4. P. 1053–1061. https://doi.org/10.1016/j.bbrc.2005.12.106
- Kakeda M., Hiratsuka M., Nagata K. et al. Human artificial chromosome (HAC) vector provides long-term therapeutic transgene expression in normal human primary fibroblasts // Gene Ther. 2005. V. 12. № 10. P. 852–856. https://doi.org/10.1038/sj.gt.3302483
- Yamada H., Kunisato A., Kawahara M. et al. Exogenous gene expression and growth regulation of hematopoietic cells via a novel human artificial chromosome // J. Hum. Genet. 2006. V. 51. № 2. P. 147–150. https://doi.org/10.1007/s10038-005-0334-9
- Kazuki Y., Hiratsuka M., Takiguchi M. et al. Complete genetic correction of iPS cells from Duchenne muscular dystrophy // Mol. Ther. 2010. V. 18. № 2. P. 386–393. https://doi.org/10.1038/mt.2009.274
- Sinenko S.A., Ponomartsev S.V., Tomilin A.N. Human artificial chromosomes for pluripotent stem cell-based tissue replacement therapy // Exp. Cell Res. 2020. V. 389. № 1. https://doi.org/10.1016/j.yexcr.2020.111882
- Benedetti S., Uno N., Hoshiya H. et al. Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next‐generation human artificial chromosomes for Duchenne muscular dystrophy // EMBO Mol. Med. 2018. V. 10. № 2. P. 254–275. https://doi.org/10.15252/emmm.201607284
- Kurosaki H., Hiratsuka M., Imaoka N. et al. Integration-free and stable expression of FVIII using a human artificial chromosome // J. Hum. Genet. 2011. V. 56. № 10. P. 727–733. https://doi.org/10.1038/jhg.2011.88.
- Wang Y., Kazuki K., Hichiwa G. et al. Human artificial chromosome carrying R-spondin1 and IL-22 expression cassettes in rejuvenated MSCs enhances therapeutic efficacy in ulcerative colitis model mice // Biomed. Pharmacother. 2025. V. 182. https://doi.org/10.1016/J.BIOPHA.2024.117751
- Hiramuki Y., Hosokawa M., Osawa K. et al. Titin fragment is a sensitive biomarker in Duchenne muscular dystrophy model mice carrying full-length human dystrophin gene on human artificial chromosome // Sci. Rep. 2025. V. 15. № 1. P. 1–9. https://doi.org/10.1038/s41598-025-85369-5
- Watanabe M., Miyamoto H., Okamoto K. et al. Phenotypic features of dystrophin gene knockout pigs harboring a human artificial chromosome containing the entire dystrophin gene // Mol. Ther. Nucl. A. 2023. V. 33. P. 444–453. https://doi.org/10.1016/j.omtn.2023.07.021
- Harrington J.J., Van Bokkelen G., Mays R.W. et al. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes // Nat. Genet. 1997. V. 15. № 4. P. 345–355. https://doi.org/10.1038/ng0497-345
- Ikeno M., Grimes B., Okazaki T. et al. Construction of YAC-based mammalian artificial chromosomes // Nat. Biotechnol. 1998. V. 16. № 5. P. 431–439. https://doi.org/10.1038/nbt0598-431
- Guiducci C., Ascenzioni F., Auriche C. et al. Use of a human minichromosome as a cloning and expression vector for mammalian cells // Hum. Mol. Genet. 1999. V. 8. № 8. https://doi.org/10.1093/hmg/8.8.1417
- Ebersole T.A., Ross A., Clark E. et al. Mammalian artificial chromosome formation from circular alphoid input DNA does not require telomere repeats // Hum. Mol. Genet. 2000. V. 9. № 11. https://doi.org/10.1093/hmg/9.11.1623
- Mejía J.E., Alazami A., Willmott A. et al. Efficiency of de novo centromere formation in human artificial chromosomes // Genomics. 2002. V. 79. № 3. P. 297–304. https://doi.org/10.1006/geno.2002.6704
- Kouprina N., Ebersole T., Pak E. et al. Cloning of human centromeres by transformation-associated recombination in yeast and generation of functional human artificial chromosomes // Nucl. Ac. Res. 2003. V. 31. № 3. P. 922–934. https://doi.org/10.1093/nar/gkg182
- Basu J., Stromberg G., Compitello G. et al. Rapid creation of BAC-based human artificial chromosome vectors by transposition with synthetic alpha-satellite arrays // Nucl. Ac. Res. 2005. V. 33. № 2. P. 587–596. https://doi.org/10.1093/nar/gki207
- Moralli D., Simpson K.M., Wade-Martins R., Monaco Z.L. A novel human artificial chromosome gene expression system using herpes simplex virus type 1 vectors // EMBO Rep. 2006. V. 7. № 9. P. 911–918. https://doi.org/10.1038/sj.embor.7400768
- Ohzeki J.I., Bergmann J.H., Kouprina N. et al. Breaking the HAC barrier: Histone H3K9 acetyl/methyl balance regulates CENP-A assembly // EMBO J. 2012. V. 31. № 10. P. 2391–2402. https://doi.org/10.1038/emboj.2012.82
- Iida Y., Kim J.H., Kazuki Y. et al. Human artificial chromosome with a conditional centromere for gene delivery and gene expression // DNA Res. 2010. V. 17. № 5. P. 293–301. https://doi.org/10.1093/dnares/dsq020
- Liskovykh M., Lee N.C., Larionov V., Kouprina N. Moving toward a higher efficiency of microcell-mediated chromosome transfer // Mol. Ther. Methods Clin. Dev. 2016. V. 3. https://doi.org/10.1038/mtm.2016.43
- Ponomartsev S.V., Sinenko S.A., Tomilin A.N. Human artificial chromosomes and their transfer to target cells // Acta Naturae. 2022. V. 14. № 3. P. 35–45. https://doi.org/10.32607/actanaturae.11670
- Uno N., Miyamoto H., Yamazaki K. et al. Microcell-mediated chromosome transfer between non-identical human iPSCs // Mol. Ther. Nucl. Ac. 2024. V. 35. № 4. https://doi.org/10.1016/j.omtn.2024.102382
- Suzuki T., Kazuki Y., Hara T., Oshimura M. Current advances in microcell-mediated chromosome transfer technology and its applications // Exp. Cell Res. 2020. V. 390. № 1. https://doi.org/10.1016/j.yexcr.2020.111915
- Nakano M., Cardinale S., Noskov V.N. et al. Inactivation of a Human Kinetochore by Specific Targeting of Chromatin Modifiers // Dev. Cell. 2008. V. 14. № 4. P. 507–522. https://doi.org/10.1016/j.devcel.2008.02.001
- Kouprina N., Samoshkin A., Erliandri I. et al. Organization of synthetic alphoid DNA array in human artificial chromosome (HAC) with a conditional centromere // ACS Synth. Biol. 2012. V. 1. № 12. P. 590–601. https://doi.org/10.1021/sb3000436
- Ebersole T., Okamoto Y., Noskov V.N. et al. Rapid generation of long synthetic tandem repeats and its application for analysis in human artificial chromosome formation // Nucl. Ac. Res. 2005. V. 33. № 15. e130. https://doi.org/10.1093/nar/gni129
- Breman A.M., Steiner C.M., Slee R.B., Grimes B.R. Input DNA ratio determines copy number of the 33 kb factor IX gene on de novo human artificial chromosomes // Mol. Therapy. 2008. V. 16. № 2. P. 315–323. https://doi.org/10.1038/sj.mt.6300361
- Alazami A.M., Mejía J.E., Monaco Z.L. Human artificial chromosomes containing chromosome 17 alphoid DNA maintain an active centromere in murine cells but are not stable // Genomics. 2004. V. 83. № 5. P. 844–851. https://doi.org/10.1016/j.ygeno.2003.11.011
- Moralli D., Chan D.Y.L., Jefferson A. et al. HAC stability in murine cells is influenced by nuclear localization and chromatin organization // BMC Cell Biol. 2009. V. 10. https://doi.org/10.1186/1471-2121-10-18
- Kim J.H., Kononenko A., Erliandri I. et al. Human artificial chromosome (HAC) vector with a conditional centromere for correction of genetic deficiencies in human cells // PNAS USA. 2011. V. 108. № 50. P. 20048–20053. https://doi.org/10.1073/pnas.1114483108
- Ponomartsev S.V., Sinenko S.A., Skvortsova E.V. et al. Human AlphoidtetO artificial chromosome as a gene therapy vector for the developing hemophilia a model in mice // Cells. 2020. V. 9. № 4. https://doi.org/10.3390/cells9040879
- Liskovykh M., Ponomartsev S., Popova E. et al. Stable maintenance of de novo assembled human artificial chromosomes in embryonic stem cells and their differentiated progeny in mice // Cell Cycle. 2015. V. 14. № 8. P. 1268–1273. https://doi.org/10.1080/15384101.2015.1014151
- Sinenko S.A., Skvortsova E.V., Liskovykh M.A. et al. Transfer of synthetic human chromosome into human induced pluripotent stem cells for biomedical applications // Cells. 2018. V. 7. № 12. https://doi.org/10.3390/cells7120261
- Ikeno M., Hasegawa Y. Applications of bottom-up human artificial chromosomes in cell research and cell engineering // Exp. Cell Res. 2020. V. 390. № 1. https://doi.org/10.1016/j.yexcr.2019.111793
- Sinenko S.A., Ponomartsev S.V., Tomilin A.N. Pluripotent stem cell-based gene therapy approach: human de novo synthesized chromosomes // Cell. Mol. Life Sci. 2021. V. 78. № 4. P. 1207–1220. https://doi.org/10.1007/s00018-020-03653-1
- Gambogi C.W., Birchak G.J., Mer E. et al. Efficient formation of single-copy human artificial chromosomes // Science. 2024. V. 383. № 6689. P. 1344–1349. https://doi.org/10.1126/science.adj3566
- Logsdon G.A., Gambogi C.W., Liskovykh M.A. et al. Human artificial chromosomes that bypass centromeric DNA // Cell. 2019. V. 178. № 3. P. 624–639. e19. https://doi.org/10.1016/j.cell.2019.06.006
- Miyamoto H., Kobayashi H., Kishima N. et al. Rapid human genomic DNA cloning into mouse artificial chromosome via direct chromosome transfer from human iPSC and CRISPR/Cas9-mediated translocation // Nucl. Ac. Res. 2024. V. 52. № 3. P. 1498–1511. https://doi.org/10.1093/nar/gkad1218
- Boyer L.A., Tong I.L., Cole M.F. et al. Core transcriptional regulatory circuitry in human embryonic stem cells // Cell. 2005. V. 122. № 6. P. 947–956. https://doi.org/10.1016/j.cell.2005.08.020
- Young R.A. Control of the embryonic stem cell state // Cell. 2011. V. 144. № 6. P. 940–954. https://doi.org/10.1016/j.cell.2011.01.032
- Avilion A.A., Nicolis S.K., Pevny L.H. et al. Multipotent cell lineages in early mouse development depend on SOX2 function // Gen. Dev. 2003. V. 17. № 1. P. 126–140. https://doi.org/10.1101/gad.224503
- Nichols J., Zevnik B., Anastassiadis K. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4 // Cell. 1998. V. 95. № 3. P. 379–391. https://doi.org/10.1016/S0092-8674(00)81769-9
- Mitsui K., Tokuzawa Y., Itoh H. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells // Cell. 2003. V. 113. № 5. P. 631–642. https://doi.org/10.1016/S0092-8674(03)00393-3
- Chambers I., Colby D., Robertson M. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells // Cell. 2003. V. 113. № 5. P. 643–655. https://doi.org/10.1016/S0092-8674(03)00392-1
- Chambers I., Silva J., Colby D. et al. Nanog safeguards pluripotency and mediates germline development // Nature. 2007. V. 450. № 7173. P. 1230–1234. https://doi.org/10.1038/nature06403
- Niwa H., Miyazaki J.-ichi, Smith A.G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells // Nat. Genet. 2000. V. 24. № 4. P. 372–376. https://doi.org/10.1038/74199
- Radzisheuskaya A., Le Bin Chia G., Dos Santos R.L. et al. A defined Oct4 level governs cell state transitions of pluripotency entry and differentiation into all embryonic lineages // Nat. Cell Biol. 2013. V. 15. № 6. P. 579–590. https://doi.org/10.1038/ncb2742
- Zeineddine D., Papadimou E., Chebli K. et al. Oct- 3/4 dose dependently regulates specification of embryonic stem cells toward a cardiac lineage and early heart development // Dev. Cell. 2006. V. 11. № 4. P. 535–546. https://doi.org/10.1016/j.devcel.2006.07.013
- Wang Z., Oron E., Nelson B. et al. Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells // Cell Stem Cell. 2012. V. 10. № 4. P. 440–454. https://doi.org/10.1016/j.stem.2012.02.016
- Yu Y., Wang X., Zhang X. et al. ERK inhibition promotes neuroectodermal precursor commitment by blocking self-renewal and primitive streak formation of the epiblast // Stem Cell Res. Ther. 2018. V. 9. № 1. P. 2. https://doi.org/10.1186/s13287-017-0750-8
- DeVeale B., Brokhman I., Mohseni P. et al. Oct4 is required ~E7.5 for proliferation in the primitive streak // PLoS Genet. 2013. V. 9. № 11. https://doi.org/10.1371/journal.pgen.1003957
- Kehler J., Tolkunova E., Koschorz B. et al. Oct4 is required for primordial germ cell survival // EMBO Rep. 2004. V. 5. № 11. P. 1078–1083. https://doi.org/10.1038/sj.embor.7400279
- Mulas C., Chia G., Jones K.A. et al. Oct4 regulates the embryonic axis and coordinates exit from pluripotency and germ layer specification in the mouse embryo // Develop. (Cambridge). 2018. V. 145. № 12. https://doi.org/10.1242/dev.159103
- Masui S., Nakatake Y., Toyooka Y. et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells // Nat. Cell Biol. 2007. V. 9. № 6. P. 625–635. https://doi.org/10.1038/ncb1589
- Kopp J.L., Ormsbee B.D., Desler M., Rizzino A. Small increases in the level of Sox2 trigger the differentiation of mouse embryonic stem cells // Stem Cells. 2008. V. 26. № 4. P. 903–911. https://doi.org/10.1634/stemcells.2007-0951
- Tsai J.M., Nowak R.P., Ebert B.L., Fischer E.S. Targeted protein degradation: from mechanisms to clinic // Nat. Rev. Mol. Cell Biol. 2024. V. 25. № 9. P. 740–757. https://doi.org/10.1038/s41580-024-00729-9
- Nishimura K., Fukagawa T., Takisawa H. et al. An auxin-based degron system for the rapid depletion of proteins in nonplant cells // Nat. Methods. 2009. V. 6. № 12. P. 917–922. https://doi.org/10.1038/nmeth.1401
- Nabet B., Roberts J.M., Buckley D.L. et al. The dTAG system for immediate and target-specific protein degradation // Nat. Chem. Biol. 2018. V. 14. № 5. P. 431–441. https://doi.org/10.1038/s41589-018-0021-8
- Li S., Prasanna X., Salo V.T. et al. An efficient auxin-inducible degron system with low basal degradation in human cells // Nat. Methods. 2019. V. 16. № 9. P. 866–869. https://doi.org/10.1038/s41592-019-0512-x
- Bates L.E., Alves M.R.P., Silva J.C.R. Auxin-degron system identifies immediate mechanisms of OCT4 // Stem Cell Reports. 2021. V. 16. № 7. P. 1818–1831. https://doi.org/10.1016/j.stemcr.2021.05.016
- Yesbolatova A., Saito Y., Kitamoto N. et al. The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice // Nat. Commun. 2020. V. 11. № 1. P. 5701. https://doi.org/10.1038/s41467-020-19532-z
- Nabet B., Ferguson F.M., Seong B.K.A. et al. Rapid and direct control of target protein levels with VHL-recruiting dTAG molecules // Nat. Commun. 2020. V. 11. № 1. P. 4687. https://doi.org/10.1038/s41467-020-18377-w
- Liu N.Q., Maresca M., van den Brand T. et al. WAPL maintains a cohesin loading cycle to preserve cell-type-specific distal gene regulation // Nat. Genet. 2021. V. 53. № 1. P. 100–109. https://doi.org/10.1038/s41588-020-00744-4
- Maresca M., van den Brand T., Li H. et al. Pioneer activity distinguishes activating from non‐activating SOX2 binding sites // EMBO J. 2023. V. 42. № 20. https://doi.org/10.15252/embj.2022113150
- Abuhashem A., Lee A.S., Joyner A.L., Hadjantonakis A.K. Rapid and efficient degradation of endogenous proteins in vivo identifies stage-specific roles of RNA Pol II pausing in mammalian development // Dev. Cell. 2022. V. 57. № 8. P. 1068–1080.e6. https://doi.org/10.1016/j.devcel.2022.03.013
- Reményi A., Lins K., Nissen L.J. et al. Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers // Genes Dev. 2003. V. 17. № 16. P. 2048–2059. https://doi.org/10.1101/gad.269303
- Williams D.C., Cai M., Clore G.M. Molecular basis for synergistic transcriptional activation by Oct1 and Sox2 revealed from the solution structure of the 42- kDa Oct1.·Sox2.·Hoxb1-DNA ternary transcription factor complex // J. Biol. Chem. 2004. V. 279. № 2. P. 1449–1457. https://doi.org/10.1074/jbc.M309790200
- Jerabek S., Ng C.K., Wu G. et al. Changing POU dimerization preferences converts Oct6 into a pluripotency inducer // EMBO Rep. 2017. V. 18. № 2. P. 319–333. https://doi.org/10.15252/embr.201642958
- Malik V., Glaser L.V., Zimmer D. et al. Pluripotency reprogramming by competent and incompetent POU factors uncovers temporal dependency for Oct4 and Sox2 // Nat. Commun. 2019. V. 10. № 1. P. 3477. https://doi.org/10.1038/s41467-019-11054-7
- Bakhmet E.I., Tomilin A.N. Key features of the POU transcription factor Oct4 from an evolutionary perspective // Cell. Mol. Life Sci. 2021. V. 78. № 23. P. 7339–7353. https://doi.org/10.1007/s00018-021-03975-8
- Pan X., Cang X., Dan S. et al. Site-specific disruption of the Oct4/Sox2 protein interaction reveals coordinated mesendodermal differentiation and the epithelial-mesenchymal transition // J. Biol. Chem. 2016. V. 291. № 35. P. 18353–18369. https://doi.org/10.1074/jbc.M116.745414
- Esch D., Vahokoski J., Groves M.R. et al. A unique Oct4 interface is crucial for reprogramming to pluripotency // Nat. Cell Biol. 2013. V. 15. № 3. P. 295–301. https://doi.org/10.1038/ncb2680
- MacCarthy C.M., Wu G., Malik V. et al. Highly cooperative chimeric super-SOX induces naive pluripotency across species // Cell Stem Cell. 2024. V. 31. № 1. P. 127–147.e9. https://doi.org/10.1016/j.stem.2023.11.010
- Han D., Wu G., Chen R. et al. A balanced Oct4 interactome is crucial for maintaining pluripotency // Sci. Adv. 2022. V. 8. № 7. https://doi.org/10.1126/sciadv.abe4375
- Tan D.S., Chen Y., Gao Y. et al. Directed evolution of an enhanced POU reprogramming factor for cell fate engineering // Mol. Biol. Evol. 2021. V. 38. № 7. P. 2854–2868. https://doi.org/10.1093/molbev/msab075
- Jauch R., Aksoy I., Hutchins A.P. et al. Conversion of Sox17 into a pluripotency reprogramming factor by reengineering its association with Oct4 on DNA // Stem Cells. 2011. V. 29. № 6. P. 940–951. https://doi.org/10.1002/stem.639
- Aksoy I., Jauch R., Chen J. et al. Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm // EMBO J. 2013. V. 32. № 7. P. 938–953. https://doi.org/10.1038/emboj.2013.31
- Veerapandian V., Ackermann J.O., Srivastava Y. et al. Directed evolution of reprogramming factors by cell selection and sequencing // Stem Cell Reports. 2018. V. 11. № 2. P. 593–606. https://doi.org/10.1016/j.stemcr.2018.07.002
- Hu H., Ho D.H.H., Tan D.S. et al. Evaluation of the determinants for improved pluripotency induction and maintenance by engineered SOX17 // Nucl. Ac. Res. 2023. V. 51. № 17. P. 8934–8956. https://doi.org/10.1093/nar/gkad597
- Ho S.Y., Hu H., Ho D.H.H. et al. An acidic residue within the OCT4 dimerization interface of SOX17 is necessary and sufficient to overcome its pluripotency-inducing activity // Stem Cell Reports. 2025. V. 20. № 3. https://doi.org/10.1016/J.STEMCR.2025.102398
Arquivos suplementares

