Genetic Approaches in Pluripotent Stem Cell Studies and Practical Applications
- Authors: Kuzmin A.A1, Sinenko S.A1, Bakhmet E.I1, Fotina A.S1, Ermakova V.V1, Tomilin A.N1
-
Affiliations:
- Institute of Cytology of the Russian Academy of Sciences
- Issue: Vol 61, No 11 (2025)
- Pages: 128–146
- Section: ГЕНЕТИКА ЧЕЛОВЕКА
- URL: https://bakhtiniada.ru/0016-6758/article/view/361193
- DOI: https://doi.org/10.7868/S3034510325110154
- ID: 361193
Cite item
Abstract
Keywords
About the authors
A. A Kuzmin
Institute of Cytology of the Russian Academy of SciencesSt. Petersburg, Russia
S. A Sinenko
Institute of Cytology of the Russian Academy of SciencesSt. Petersburg, Russia
E. I Bakhmet
Institute of Cytology of the Russian Academy of SciencesSt. Petersburg, Russia
A. S Fotina
Institute of Cytology of the Russian Academy of SciencesSt. Petersburg, ussia
V. V Ermakova
Institute of Cytology of the Russian Academy of SciencesSt. Petersburg, Russia
A. N Tomilin
Institute of Cytology of the Russian Academy of Sciences
Email: a.tomilin@incras.ru
St. Petersburg, Russia
References
- Evans M.J., Kaufman M.H. Establishment in culture of pluripotential cells from mouse embryos // Nature. 1981. V. 292. № 5819. P. 154–156. https://doi.org/10.1038/292154a0
- Martin G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells // PNAS USA. 1981. V. 78. № 12. P. 7634–7638. https://doi.org/10.1073/pnas.78.12.7634
- Gordeev M.N., Bakhmet E.I., Tomilin A.N. Pluripotency dynamics during embryogenesis and in cell culture // Russ. J. Dev. Biol. 2021. V. 52. № 6. P. 379–389. https://doi.org/10.1134/s1062360421060059
- Thomas K.R., Capecchi M.R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells // Cell. 1987. V. 51. № 3. P. 503–512. https://doi.org/10.1016/0092-8674(87)90646-5
- Knott G.J., Doudna J.A. CRISPR-Cas guides the future of genetic engineering // Sci. 2018. V. 361. № 6405. P. 866–869. https://doi.org/10.1126/science.aat5011
- Thomson J.A., Itskovitz-Eldor J., Shapiro S.S. et al. Embryonic stem cell lines derived from human blastocysts // Science. 1998. V. 282. № 5391. P. 1145–1147. https://doi.org/10.1126/science.282.5391.1145
- Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors // Cell. 2006. V. 126. № 4. P. 663–676. https://doi.org/10.1016/j.cell.2006.07.024
- Takahashi K., Tanabe K., Ohnuki M. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors // Cell. 2007. V. 131. № 5. P. 861–872. https://doi.org/10.1016/J.CELL.2007.11.019
- Cyranoski D. “Reprogrammed” stem cells approved to mend human hearts for the first time news /631/532 // Nature. 2018. V. 557. № 7707. P. 619–620. https://doi.org/10.1038/d41586-018-05278-8
- Young C.S., Hicks M.R., Ermolova N.V. et al. A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells // Cell Stem Cell. 2016. V. 18. № 4. P. 533–540. https://doi.org/10.1016/j.stem.2016.01.021
- Hoang D.M., Pham P.T., Bach T.Q. et al. Stem cellbased therapy for human diseases // Signal Transduct. Target Ther. 2022. V. 7. № 1. P. 272. https://doi.org/10.1038/s41392-022-01134-4
- Ortuño-Costela M.D.C., Cerrada V., García-López M., Gallardo M.E. The challenge of bringing iPSCs to the patient // Int. J. Mol. Sci. 2019. V. 20. № 24. https://doi.org/10.3390/ijms20246305
- Pfeifer A., Ikawa M., Dayn Y., Verma I.M. Transgenesis by lentiviral vectors: Lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos // PNAS USA. 2002. V. 99. № 4. P. 2140–2145. https://doi.org/10.1073/pnas.251682798
- Hamaguchi I., Woods N.B., Panagopoulos I. et al. Lentivirus vector gene expression during ES cell-derived hematopoietic development in vitro // J. Virol. 2000. V. 74. № 22. https://doi.org/10.1128/jvi.74.22.10778-10784.2000
- Asano T., Hanazono Y., Ueda Y. et al. Highly efficient gene transfer into primate embryonic stem cells with a simian with a lentivirus vector // Mol. Therapy. 2002. V. 6. № 2. P. 162–168. https://doi.org/10.1006/mthe.2002.0655
- Ivics Z., Hackett P.B., Plasterk R.H., Izsvák Z. Molecular reconstruction of sleeping beauty, a Tc1-like transposon from fish, and its transposition in human cells // Cell. 1997. V. 91. № 4. P. 501–510. https://doi.org/10.1016/S0092-8674(00)80436-5
- Ivics Z., Li M.A., Mátés L. et al. Transposon-mediated genome manipulation in vertebrates // Nat. Methods. 2009. V. 6. № 6. P. 415–422. https://doi.org/10.1038/nmeth.1332
- Woltjen K., Michael I.P., Mohseni P. et al. PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells // Nature. 2009. V. 458. № 7239. P. 766–770. https://doi.org/10.1038/nature07863
- Yusa K., Rad R., Takeda J., Bradley A. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon // Nat. Methods. 2009. V. 6. № 5. P. 363–369. https://doi.org/10.1038/nmeth.1323
- Rostovskaya M., Fu J., Obst M. et al. Transposon-mediated BAC transgenesis in human ES cells // Nucl. Ac. Res. 2012. V. 40. № 19. e150. https://doi.org/10.1093/nar/gks643
- Bhaya D., Davison M., Barrangou R. CRISPR-cas systems in bacteria and archaea: Versatile small RNAs for adaptive defense and regulation // Annu. Rev. Genet. 2011. V. 45. P. 273–297. https://doi.org/10.1146/annurev-genet-110410-132430
- Jinek M., Chylinski K., Fonfara I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity // Science. 2012. V. 337. № 6096. P. 816–821. https://doi.org/10.1126/science.1225829
- Zetsche B., Gootenberg J.S., Abudayyeh O.O. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system // Cell. 2015. V. 163. № 3. P. 759–771. https://doi.org/10.1016/j.cell.2015.09.038
- Mao Z., Bozzella M., Seluanov A., Gorbunova V. Comparison of nonhomologous end joining and homologous recombination in human cells // DNA Repair (Amst.). 2008. V. 7. № 10. P. 1765–1771. https://doi.org/10.1016/j.dnarep.2008.06.018
- Sfeir A., Symington L.S. Microhomology-mediated end joining: A back-up survival mechanism or dedicated pathway? // Trends Biochem. Sci. 2015. V. 40. № 11. P. 701–714. https://doi.org/10.1016/j.tibs.2015.08.006
- Ran F.A., Hsu P.D., Wright J. et al. Genome engineering using the CRISPR-Cas9 system // Nat. Protoc. 2013. V. 8. № 11. P. 2281–2308. https://doi.org/10.1038/nprot.2013.143
- Saleh-Gohari N., Helleday T. Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle un human cells // Nucl. Ac. Res. 2004. V. 32. № 12. P. 3683–3688. https://doi.org/10.1093/nar/gkh703
- Pardo B., Gómez-González B., Aguilera A. DNA repair in mammalian cells: DNA double-strand break repair: how to fix a broken relationship // Cell Mol. Life Sci. 2009. V. 66. № 6. P. 1039–1056. https://doi.org/10.1007/s00018-009-8740-3
- Yang H., Ren S., Yu S. et al. Methods favoring homology-directed repair choice in response to CRISPR/ Cas9 induced-double strand breaks // Int. J. Mol. Sci. 2020. V. 21. № 18. https://doi.org/10.3390/ijms21186461
- Miyaoka Y., Mayerl S.J., Chan A.H., Conklin B.R. Detection and quantification of HDR and NHEJ induced by genome editing at endogenous gene loci u s i n g d r o p l e t d i g i t a l P C R / / Methods Mol. Biol. 2018. V. 1768. P. 349–362. https://doi.org/10.1007/978-1-4939-7778-9_20
- Vitale I., Manic G., De Maria R. et al. DNA damage in stem cells // Mol. Cell. 2017. V. 66. № 3. P. 306–319. https://doi.org/10.1016/j.molcel.2017.04.006
- Reuven N., Shaul Y. Selecting for CRISPR-edited knock-in cells // Int. J. Mol. Sci. 2022. V. 23. № 19. https://doi.org/10.3390/ijms231911919
- Selvaraj S., Feist W.N., Viel S. et al. High-efficiency transgene integration by homology-directed repair in human primary cells using DNA-PKcs inhibition // Nat. Biotechnol. 2024. V. 42. № 5. P. 731–744. https://doi.org/10.1038/s41587-023-01888-4
- Singh A., Smedley G.D., Rose J.G. et al. A high efficiency precision genome editing method with CRISPR in iPSCs // Sci. Rep. 2024. V. 14. № 1. P. 9933. https://doi.org/10.1038/s41598-024-60766-4
- Yu C., Liu Y., Ma T. et al. Small molecules enhance crispr genome editing in pluripotent stem cells // Cell Stem Cell. 2015. V. 16. № 2. https://doi.org/10.1016/j.stem.2015.01.003
- Guo Q., Mintier G., Ma-Edmonds M. et al. “Cold shock” increases the frequency of homology directed repair gene editing in induced pluripotent stem cells // Sci. Rep. 2018. V. 8. № 1. P. 2080. https://doi.org/10.1038/s41598-018-20358-5
- Richardson C.D., Ray G.J., DeWitt M.A. et al. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA // Nat. Biotechnol. 2016. V. 34. № 3. P. 339–344. https://doi.org/10.1038/nbt.3481
- Liang X., Potter J., Kumar S. et al. Enhanced CRISPR/ Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA // J. Biotechnol. 2017. V. 241. P. 136–146. https://doi.org/10.1016/j.jbiotec.2016.11.011
- Anzalone A.V., Randolph P.B., Davis J.R. et al. Searchand-replace genome editing without double-strand breaks or donor DNA // Nature. 2019. V. 576. № 7785. P. 149–157. https://doi.org/10.1038/s41586-019-1711-4
- Li H., Busquets O., Verma Y. et al. Highly efficient generation of isogenic pluripotent stem cell models using prime editing // Elife. 2022. V. 11. https://doi.org/10.7554/eLife.79208
- Chen P.J., Hussmann J.A., Yan J. et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes // Cell. 2021. V. 184. № 22. P. 5635–5652.e29. https://doi.org/10.1016/j.cell.2021.09.018
- Wu Y., Zhong A., Sidharta M. et al. Robust and inducible genome editing via an all-in-one prime editor in human pluripotent stem cells // Nat. Commun. 2024. V. 15. № 1. P. 10824. https://doi.org/10.1038/s41467-024-55104-1
- Eggenschwiler R., Gschwendtberger T., Felski C. et al. A selectable all-in-one CRISPR prime editing piggyBac transposon allows for highly efficient gene editing in human cell lines // Sci. Rep. 2021. V. 11. № 1. P. 22154. https://doi.org/10.1038/s41598-021-01689-2
- Zheng C., Liu B., Dong X. et al. Template-jumping prime editing enables large insertion and exon rewriting in vivo // Nat. Commun. 2023. V. 14. № 1. P. 3369. https://doi.org/10.1038/s41467-023-39137-6
- Klompe S.E., Vo P.L.H., Halpin-Healy T.S., Sternberg S.H. Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration // Nature. 2019. V. 571. № 7764. P. 219–225. https://doi.org/10.1038/s41586-019-1323-z
- Lampe G.D., King R.T., Halpin-Healy T.S. et al. Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases // Nat. Biotechnol. 2024. V. 42. № 1. P. 87–98. https://doi.org/10.1038/s41587-023-01748-1
- Ye L., Chang J.C., Lin C. et al. Generation of induced pluripotent stem cells using site-specific integration with phage integrase // PNAS USA. 2010. V. 107. № 45. P. 19467–19472. https://doi.org/10.1073/pnas.1012677107
- Duportet X., Wroblewska L., Guye P. et al. A platform for rapid prototyping of synthetic gene networks in mammalian cells // Nucl. Ac. Res. 2014. V. 42. № 21. P. 13440–13451. https://doi.org/10.1093/nar/gku1082
- Rath P., Kramer P., Biggs D. et al. Optimizing approaches for targeted integration of transgenic cassettes by integrase-mediated cassette exchange in mouse and human stem cells // Stem Cells. 2025. V. 43. № 1. https://doi.org/10.1093/STMCLS/SXAE092
- Blanch-Asensio A., Grandela C., Brandão K.O. et al. STRAIGHT-IN enables high-throughput targeting of large DNA payloads in human pluripotent stem cells // Cell Rep. Meth. 2022. V. 2. № 10. https://doi.org/10.1016/j.crmeth.2022.100300
- Pandey S., Gao X.D., Krasnow N.A. et al. Efficient site-specific integration of large genes in mammalian cells via continuously evolved recombinases and prime editing // Nat. Biomed. Eng. 2024. V. 9. № 1. P. 22–39. https://doi.org/10.1038/s41551-024-01227-1
- Yarnall M.T.N., Ioannidi E.I., Schmitt-Ulms C. et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases // Nat. Biotechnol. 2023. V. 41. № 4. P. 500–512. https://doi.org/10.1038/s41587-022-01527-4
- Durrant M.G., Fanton A., Tycko J. et al. Systematic discovery of recombinases for efficient integration of large DNA sequences into the human genome // Nat. Biotechnol. 2023. V. 41. № 4. P. 488–499. https://doi.org/10.1038/s41587-022-01494-w
- Qi L.S., Larson M.H., Gilbert L.A. et al. Repurposing CRISPR as an RNA-γuided platform for sequence-specific control of gene expression // Cell. 2013. V. 152. № 5. P. 1173–1183. https://doi.org/10.1016/j.cell.2013.02.022
- O’Geen H., Bates S.L., Carter S.S. et al. Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner // Epigen. Chromat. 2019. V. 12. № 1. P. 26. https://doi.org/10.1186/s13072-019-0275-8
- Ziller M.J., Ortega J.A., Quinlan K.A. et al. Dissecting the Functional Consequences of De Novo DNA Methylation dynamics in human motor neuron differentiation and physiology // Cell Stem Cell. 2018. V. 22. № 4. P. 559–574.e9. https://doi.org/10.1016/j.stem.2018.02.012
- Perez-Pinera P., Kocak D.D., Vockley C.M. et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors // Nat. Methods. 2013. V. 10. № 10. P. 973–976. https://doi.org/10.1038/nmeth.2600
- Chavez A., Scheiman J., Vora S. et al. Highly efficient Cas9-mediated transcriptional programming // Nat. Methods. 2015. V. 12. № 4. P. 326–328. https://doi.org/10.1038/nmeth.3312
- Tanenbaum M.E., Gilbert L.A., Qi L.S. et al. A protein-tagging system for signal amplification in gene expression and fluorescence imaging // Cell. 2014. V. 159. № 3. P. 635–646. https://doi.org/10.1016/j.cell.2014.09.039
- Konermann S., Brigham M.D., Trevino A.E. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex // Nature. 2015. V. 517. № 7536. P. 583–588. https://doi.org/10.1038/nature14136
- Mandegar M.A., Huebsch N., Frolov E.B. et al. CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs // Cell Stem Cell. 2016. V. 18. № 4. P. 541–553. https://doi.org/10.1016/j.stem.2016.01.022
- Liu P., Chen M., Liu Y. et al. CRISPR-Based chromatin remodeling of the endogenous Oct4 or Sox2 locus enables reprogramming to pluripotency // Cell Stem Cell. 2018. V. 22. № 2. P. 252–261.e4. https://doi.org/10.1016/j.stem.2017.12.001
- Balboa D., Weltner J., Eurola S. et al. Conditionally stabilized dCas9 activator for controlling gene expression in human cell reprogramming and differentiation // Stem Cell Reports. 2015. V. 5. № 3. P. 448–459. https://doi.org/10.1016/j.stemcr.2015.08.001
- Wei S., Zou Q., Lai S. et al. Conversion of embryonic stem cells into extraembryonic lineages by CRISPR-mediated activators // Sci. Rep. 2016. V. 6. https://doi.org/10.1038/srep19648
- Chakraborty S., Ji H., Kabadi A.M. et al. A CRISPR/ Cas9-based system for reprogramming cell lineage specification // Stem Cell Reports. 2014. V. 3. № 6. P. 940–947. https://doi.org/10.1016/j.stemcr.2014.09.013
- Black J.B., Adler A.F., Wang H.G. et al. Targeted epigenetic remodeling of endogenous loci by CRISPR/ Cas9-Based transcriptional activators directly converts fibroblasts to neuronal cells // Cell Stem Cell. 2016. V. 19. № 3. P. 406–414. https://doi.org/10.1016/j.stem.2016.07.001
- Khoo T.S., Jamal R., Abdul Ghani N.A. et al. Retention of somatic memory associated with cell identity, age and metabolism in induced pluripotent stem (iPS) cells reprogramming // Stem Cell Rev. Rep. 2020. V. 16. № 2. P. 251–261. https://doi.org/10.1007/s12015-020-09956-x
- Blanco E., González-Ramírez M., Alcaine-Colet A. et al. The bivalent genome: Characterization, structure, and regulation // Trends Genet. 2020. V. 36. № 2. P. 118–131. https://doi.org/10.1016/j.tig.2019.11.004
- Nakamura M., Gao Y., Dominguez A.A., Qi L.S. CRISPR technologies for precise epigenome editing // Nat. Cell Biol. 2021. V. 23. № 1. P. 11–22. https://doi.org/10.1038/s41556-020-00620-7
- Gao X., Tsang J.C.H., Gaba F. et al. Comparison of TALE designer transcription factors and the CRISPR/ dCas9 in regulation of gene expression by targeting enhancers // Nucl. Ac. Res. 2014. V. 42. № 20. e155. https://doi.org/10.1093/nar/gku836
- Schoger E., Argyriou L., Zimmermann W.H. et al. Generation of homozygous CRISPRa human induced pluripotent stem cell (hiPSC) lines for sustained endogenous gene activation // Stem Cell Res. 2020. V. 48. https://doi.org/10.1016/j.scr.2020.101944
- Schoger E., Zimmermann W.H., Cyganek L., Zelarayán L.C. Establishment of two homozygous CRISPR interference (CRISPRi) knock-in human induced pluripotent stem cell (hiPSC) lines for titratable endogenous gene repression // Stem Cell Res. 2021. V. 55. https://doi.org/10.1016/j.scr.2021.102473
- Schuster A., Erasimus H., Fritah S. et al. RNAi/CRISPR screens: from a pool to a valid hit // Trends Biotechnol. 2019. V. 37. № 1. https://doi.org/10.1016/j.tibtech.2018.08.002
- Bock C., Datlinger P., Chardon F. et al. High-content CRISPR screening // Nat. Rev. Methods Primers. 2022. V. 2. № 1. P. 9. https://doi.org/10.1038/s43586-022-00098-7
- Li S., Zhang A., Xue H. et al. One-step piggyBac transposon-based CRISPR/Cas9 activation of multiple genes // Mol. Ther. Nucl. Ac. 2017. V. 8. P. 64–76. https://doi.org/10.1016/j.omtn.2017.06.007
- Tian R., Gachechiladze M.A., Ludwig C.H. et al. CRISPR interference-based platform for multimodal genetic screens in human iPSC-derived neurons // Neuron. 2019. V. 104. № 2. P. 239–255.e12. https://doi.org/10.1016/j.neuron.2019.07.014
- Friedman C.E., Nguyen Q., Lukowski S.W. et al. Single-cell transcriptomic analysis of cardiac differentiation from human PSCs reveals HOPX-dependent cardiomyocyte maturation // Cell Stem Cell. 2018. V. 23. № 4. P. 586–598.e8. https://doi.org/10.1016/j.stem.2018.09.009
- Eskildsen T.V., Ayoubi S., Thomassen M. et al. MESP1 knock-down in human iPSC attenuates early vascular progenitor cell differentiation after completed primitive streak specification // Dev. Biol. 2019. V. 445. № 1. P. 1–7. https://doi.org/10.1016/j.ydbio.2018.10.020
- Usluer S., Hallast P., Crepaldi L. et al. Optimized whole-genome CRISPR interference screens identify ARID1A-dependent growth regulators in human induced pluripotent stem cells // Stem Cell Reports. 2023. V. 18. № 5. P. 1061–1074. https://doi.org/10.1016/j.stemcr.2023.03.008
- Black J.B., McCutcheon S.R., Dube S. et al. Master regulators and cofactors of human neuronal cell fate specification identified by CRISPR gene activation screens // Cell Rep. 2020. V. 33. № 9. https://doi.org/10.1016/j.celrep.2020.108460
- Liu Y., Yu C., Daley T.P. et al. CRISPR activation screens systematically identify factors that drive neuronal fate and reprogramming // Cell Stem Cell. 2018. V. 23. № 5. P. 758–771.e8. https://doi.org/10.1016/j.stem.2018.09.003
- Yang J., Rajan S.S., Friedrich M.J. et al. Genome-scale CRISPRa screen identifies novel factors for cellular reprogramming // Stem Cell Reports. 2019. V. 12. № 4. P. 757–771. https://doi.org/10.1016/j.stemcr.2019.02.010
- Kakeda M., Nagata K., Osawa K. et al. A new chromosome 14-based human artificial chromosome (HAC) vector system for efficient transgene expression in human primary cells // Biochem. Biophys. Res. Commun. 2011. V. 415. № 3. P. 439–444. https://doi.org/10.1016/j.bbrc.2011.10.088
- Farr C.J., Stevanovic M., Thomson E.J. et al. Telomere-associated chromosome fragmentation: Applications in genome manipulation and analysis // Nat. Genet. 1992. V. 2. № 4. P. 275–282. https://doi.org/10.1038/ng1292-275
- Mills W., Critcher R., Lee C., Farr C.J. Generation of an ~2.4 Mb human X centromere-based minichromosome by targeted telomere-associated chromosome fragmentation in DT40 // Hum. Mol. Genet. 1999. V. 8. № 5. P. 751–761. https://doi.org/10.1093/HMG/8.5.751
- Kuroiwa Y., Tomizuka K., Shinohara T. et al. Manipulation of human minichromosomes to carry greater than megabase-sized chromosome inserts // Nat. Biotechnol. 2000. V. 18. № 10. P. 1086–1090. https://doi.org/10.1038/80287
- Shen M.H., Mee P.J., Nichols J. et al. A structurally defined mini-chromosome vector for the mouse germ line // Curr. Biol. 2000. V. 10. № 1. P. 31–34. https://doi.org/10.1016/S0960-9822(99)00261-4
- Kazuki Y., Oshimura M. Human artificial chromosomes for gene delivery and the development of animal models // Mol. Ther. 2011. V. 19. № 9. P. 1591–1601. https://doi.org/10.1038/mt.2011.136
- Kazuki Y., Hoshiya H., Takiguchi M. et al. Refined human artificial chromosome vectors for gene therapy and animal transgenesis // Gene Ther. 2011. V. 18. № 4. P. 384–393. https://doi.org/10.1038/gt.2010.147
- Katoh M., Ayabe F., Norikane S. et al. Construction of a novel human artificial chromosome vector for gene delivery // Biochem. Biophys. Res. Commun. 2004. V. 321. № 2. P. 280–290. https://doi.org/10.1016/j.bbrc.2004.06.145
- Hoshiya H., Kazuki Y., Abe S. et al. A highly stable and nonintegrated human artificial chromosome (HAC) containing the 2.4 Mb entire human dystrophin gene // Mol. Ther. 2009. V. 17. № 2. P. 309–317. https://doi.org/10.1038/mt.2008.253
- Yamaguchi S., Kazuki Y., Nakayama Y. et al. A method for producing transgenic cells using a multi-integrase system on a human artificial chromosome vector // PLoS One. 2011. V. 6. № 2. https://doi.org/10.1371/journal.pone.0017267
- Suda T., Katoh M., Hiratsuka M. et al. Heat-regulated production and secretion of insulin from a human artificial chromosome vector // Biochem. Biophys. Res. Commun. 2006. V. 340. № 4. P. 1053–1061. https://doi.org/10.1016/j.bbrc.2005.12.106
- Kakeda M., Hiratsuka M., Nagata K. et al. Human artificial chromosome (HAC) vector provides long-term therapeutic transgene expression in normal human primary fibroblasts // Gene Ther. 2005. V. 12. № 10. P. 852–856. https://doi.org/10.1038/sj.gt.3302483
- Yamada H., Kunisato A., Kawahara M. et al. Exogenous gene expression and growth regulation of hematopoietic cells via a novel human artificial chromosome // J. Hum. Genet. 2006. V. 51. № 2. P. 147–150. https://doi.org/10.1007/s10038-005-0334-9
- Kazuki Y., Hiratsuka M., Takiguchi M. et al. Complete genetic correction of iPS cells from Duchenne muscular dystrophy // Mol. Ther. 2010. V. 18. № 2. P. 386–393. https://doi.org/10.1038/mt.2009.274
- Sinenko S.A., Ponomartsev S.V., Tomilin A.N. Human artificial chromosomes for pluripotent stem cell-based tissue replacement therapy // Exp. Cell Res. 2020. V. 389. № 1. https://doi.org/10.1016/j.yexcr.2020.111882
- Benedetti S., Uno N., Hoshiya H. et al. Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next‐generation human artificial chromosomes for Duchenne muscular dystrophy // EMBO Mol. Med. 2018. V. 10. № 2. P. 254–275. https://doi.org/10.15252/emmm.201607284
- Kurosaki H., Hiratsuka M., Imaoka N. et al. Integration-free and stable expression of FVIII using a human artificial chromosome // J. Hum. Genet. 2011. V. 56. № 10. P. 727–733. https://doi.org/10.1038/jhg.2011.88.
- Wang Y., Kazuki K., Hichiwa G. et al. Human artificial chromosome carrying R-spondin1 and IL-22 expression cassettes in rejuvenated MSCs enhances therapeutic efficacy in ulcerative colitis model mice // Biomed. Pharmacother. 2025. V. 182. https://doi.org/10.1016/J.BIOPHA.2024.117751
- Hiramuki Y., Hosokawa M., Osawa K. et al. Titin fragment is a sensitive biomarker in Duchenne muscular dystrophy model mice carrying full-length human dystrophin gene on human artificial chromosome // Sci. Rep. 2025. V. 15. № 1. P. 1–9. https://doi.org/10.1038/s41598-025-85369-5
- Watanabe M., Miyamoto H., Okamoto K. et al. Phenotypic features of dystrophin gene knockout pigs harboring a human artificial chromosome containing the entire dystrophin gene // Mol. Ther. Nucl. A. 2023. V. 33. P. 444–453. https://doi.org/10.1016/j.omtn.2023.07.021
- Harrington J.J., Van Bokkelen G., Mays R.W. et al. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes // Nat. Genet. 1997. V. 15. № 4. P. 345–355. https://doi.org/10.1038/ng0497-345
- Ikeno M., Grimes B., Okazaki T. et al. Construction of YAC-based mammalian artificial chromosomes // Nat. Biotechnol. 1998. V. 16. № 5. P. 431–439. https://doi.org/10.1038/nbt0598-431
- Guiducci C., Ascenzioni F., Auriche C. et al. Use of a human minichromosome as a cloning and expression vector for mammalian cells // Hum. Mol. Genet. 1999. V. 8. № 8. https://doi.org/10.1093/hmg/8.8.1417
- Ebersole T.A., Ross A., Clark E. et al. Mammalian artificial chromosome formation from circular alphoid input DNA does not require telomere repeats // Hum. Mol. Genet. 2000. V. 9. № 11. https://doi.org/10.1093/hmg/9.11.1623
- Mejía J.E., Alazami A., Willmott A. et al. Efficiency of de novo centromere formation in human artificial chromosomes // Genomics. 2002. V. 79. № 3. P. 297–304. https://doi.org/10.1006/geno.2002.6704
- Kouprina N., Ebersole T., Pak E. et al. Cloning of human centromeres by transformation-associated recombination in yeast and generation of functional human artificial chromosomes // Nucl. Ac. Res. 2003. V. 31. № 3. P. 922–934. https://doi.org/10.1093/nar/gkg182
- Basu J., Stromberg G., Compitello G. et al. Rapid creation of BAC-based human artificial chromosome vectors by transposition with synthetic alpha-satellite arrays // Nucl. Ac. Res. 2005. V. 33. № 2. P. 587–596. https://doi.org/10.1093/nar/gki207
- Moralli D., Simpson K.M., Wade-Martins R., Monaco Z.L. A novel human artificial chromosome gene expression system using herpes simplex virus type 1 vectors // EMBO Rep. 2006. V. 7. № 9. P. 911–918. https://doi.org/10.1038/sj.embor.7400768
- Ohzeki J.I., Bergmann J.H., Kouprina N. et al. Breaking the HAC barrier: Histone H3K9 acetyl/methyl balance regulates CENP-A assembly // EMBO J. 2012. V. 31. № 10. P. 2391–2402. https://doi.org/10.1038/emboj.2012.82
- Iida Y., Kim J.H., Kazuki Y. et al. Human artificial chromosome with a conditional centromere for gene delivery and gene expression // DNA Res. 2010. V. 17. № 5. P. 293–301. https://doi.org/10.1093/dnares/dsq020
- Liskovykh M., Lee N.C., Larionov V., Kouprina N. Moving toward a higher efficiency of microcell-mediated chromosome transfer // Mol. Ther. Methods Clin. Dev. 2016. V. 3. https://doi.org/10.1038/mtm.2016.43
- Ponomartsev S.V., Sinenko S.A., Tomilin A.N. Human artificial chromosomes and their transfer to target cells // Acta Naturae. 2022. V. 14. № 3. P. 35–45. https://doi.org/10.32607/actanaturae.11670
- Uno N., Miyamoto H., Yamazaki K. et al. Microcell-mediated chromosome transfer between non-identical human iPSCs // Mol. Ther. Nucl. Ac. 2024. V. 35. № 4. https://doi.org/10.1016/j.omtn.2024.102382
- Suzuki T., Kazuki Y., Hara T., Oshimura M. Current advances in microcell-mediated chromosome transfer technology and its applications // Exp. Cell Res. 2020. V. 390. № 1. https://doi.org/10.1016/j.yexcr.2020.111915
- Nakano M., Cardinale S., Noskov V.N. et al. Inactivation of a Human Kinetochore by Specific Targeting of Chromatin Modifiers // Dev. Cell. 2008. V. 14. № 4. P. 507–522. https://doi.org/10.1016/j.devcel.2008.02.001
- Kouprina N., Samoshkin A., Erliandri I. et al. Organization of synthetic alphoid DNA array in human artificial chromosome (HAC) with a conditional centromere // ACS Synth. Biol. 2012. V. 1. № 12. P. 590–601. https://doi.org/10.1021/sb3000436
- Ebersole T., Okamoto Y., Noskov V.N. et al. Rapid generation of long synthetic tandem repeats and its application for analysis in human artificial chromosome formation // Nucl. Ac. Res. 2005. V. 33. № 15. e130. https://doi.org/10.1093/nar/gni129
- Breman A.M., Steiner C.M., Slee R.B., Grimes B.R. Input DNA ratio determines copy number of the 33 kb factor IX gene on de novo human artificial chromosomes // Mol. Therapy. 2008. V. 16. № 2. P. 315–323. https://doi.org/10.1038/sj.mt.6300361
- Alazami A.M., Mejía J.E., Monaco Z.L. Human artificial chromosomes containing chromosome 17 alphoid DNA maintain an active centromere in murine cells but are not stable // Genomics. 2004. V. 83. № 5. P. 844–851. https://doi.org/10.1016/j.ygeno.2003.11.011
- Moralli D., Chan D.Y.L., Jefferson A. et al. HAC stability in murine cells is influenced by nuclear localization and chromatin organization // BMC Cell Biol. 2009. V. 10. https://doi.org/10.1186/1471-2121-10-18
- Kim J.H., Kononenko A., Erliandri I. et al. Human artificial chromosome (HAC) vector with a conditional centromere for correction of genetic deficiencies in human cells // PNAS USA. 2011. V. 108. № 50. P. 20048–20053. https://doi.org/10.1073/pnas.1114483108
- Ponomartsev S.V., Sinenko S.A., Skvortsova E.V. et al. Human AlphoidtetO artificial chromosome as a gene therapy vector for the developing hemophilia a model in mice // Cells. 2020. V. 9. № 4. https://doi.org/10.3390/cells9040879
- Liskovykh M., Ponomartsev S., Popova E. et al. Stable maintenance of de novo assembled human artificial chromosomes in embryonic stem cells and their differentiated progeny in mice // Cell Cycle. 2015. V. 14. № 8. P. 1268–1273. https://doi.org/10.1080/15384101.2015.1014151
- Sinenko S.A., Skvortsova E.V., Liskovykh M.A. et al. Transfer of synthetic human chromosome into human induced pluripotent stem cells for biomedical applications // Cells. 2018. V. 7. № 12. https://doi.org/10.3390/cells7120261
- Ikeno M., Hasegawa Y. Applications of bottom-up human artificial chromosomes in cell research and cell engineering // Exp. Cell Res. 2020. V. 390. № 1. https://doi.org/10.1016/j.yexcr.2019.111793
- Sinenko S.A., Ponomartsev S.V., Tomilin A.N. Pluripotent stem cell-based gene therapy approach: human de novo synthesized chromosomes // Cell. Mol. Life Sci. 2021. V. 78. № 4. P. 1207–1220. https://doi.org/10.1007/s00018-020-03653-1
- Gambogi C.W., Birchak G.J., Mer E. et al. Efficient formation of single-copy human artificial chromosomes // Science. 2024. V. 383. № 6689. P. 1344–1349. https://doi.org/10.1126/science.adj3566
- Logsdon G.A., Gambogi C.W., Liskovykh M.A. et al. Human artificial chromosomes that bypass centromeric DNA // Cell. 2019. V. 178. № 3. P. 624–639. e19. https://doi.org/10.1016/j.cell.2019.06.006
- Miyamoto H., Kobayashi H., Kishima N. et al. Rapid human genomic DNA cloning into mouse artificial chromosome via direct chromosome transfer from human iPSC and CRISPR/Cas9-mediated translocation // Nucl. Ac. Res. 2024. V. 52. № 3. P. 1498–1511. https://doi.org/10.1093/nar/gkad1218
- Boyer L.A., Tong I.L., Cole M.F. et al. Core transcriptional regulatory circuitry in human embryonic stem cells // Cell. 2005. V. 122. № 6. P. 947–956. https://doi.org/10.1016/j.cell.2005.08.020
- Young R.A. Control of the embryonic stem cell state // Cell. 2011. V. 144. № 6. P. 940–954. https://doi.org/10.1016/j.cell.2011.01.032
- Avilion A.A., Nicolis S.K., Pevny L.H. et al. Multipotent cell lineages in early mouse development depend on SOX2 function // Gen. Dev. 2003. V. 17. № 1. P. 126–140. https://doi.org/10.1101/gad.224503
- Nichols J., Zevnik B., Anastassiadis K. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4 // Cell. 1998. V. 95. № 3. P. 379–391. https://doi.org/10.1016/S0092-8674(00)81769-9
- Mitsui K., Tokuzawa Y., Itoh H. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells // Cell. 2003. V. 113. № 5. P. 631–642. https://doi.org/10.1016/S0092-8674(03)00393-3
- Chambers I., Colby D., Robertson M. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells // Cell. 2003. V. 113. № 5. P. 643–655. https://doi.org/10.1016/S0092-8674(03)00392-1
- Chambers I., Silva J., Colby D. et al. Nanog safeguards pluripotency and mediates germline development // Nature. 2007. V. 450. № 7173. P. 1230–1234. https://doi.org/10.1038/nature06403
- Niwa H., Miyazaki J.-ichi, Smith A.G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells // Nat. Genet. 2000. V. 24. № 4. P. 372–376. https://doi.org/10.1038/74199
- Radzisheuskaya A., Le Bin Chia G., Dos Santos R.L. et al. A defined Oct4 level governs cell state transitions of pluripotency entry and differentiation into all embryonic lineages // Nat. Cell Biol. 2013. V. 15. № 6. P. 579–590. https://doi.org/10.1038/ncb2742
- Zeineddine D., Papadimou E., Chebli K. et al. Oct- 3/4 dose dependently regulates specification of embryonic stem cells toward a cardiac lineage and early heart development // Dev. Cell. 2006. V. 11. № 4. P. 535–546. https://doi.org/10.1016/j.devcel.2006.07.013
- Wang Z., Oron E., Nelson B. et al. Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells // Cell Stem Cell. 2012. V. 10. № 4. P. 440–454. https://doi.org/10.1016/j.stem.2012.02.016
- Yu Y., Wang X., Zhang X. et al. ERK inhibition promotes neuroectodermal precursor commitment by blocking self-renewal and primitive streak formation of the epiblast // Stem Cell Res. Ther. 2018. V. 9. № 1. P. 2. https://doi.org/10.1186/s13287-017-0750-8
- DeVeale B., Brokhman I., Mohseni P. et al. Oct4 is required ~E7.5 for proliferation in the primitive streak // PLoS Genet. 2013. V. 9. № 11. https://doi.org/10.1371/journal.pgen.1003957
- Kehler J., Tolkunova E., Koschorz B. et al. Oct4 is required for primordial germ cell survival // EMBO Rep. 2004. V. 5. № 11. P. 1078–1083. https://doi.org/10.1038/sj.embor.7400279
- Mulas C., Chia G., Jones K.A. et al. Oct4 regulates the embryonic axis and coordinates exit from pluripotency and germ layer specification in the mouse embryo // Develop. (Cambridge). 2018. V. 145. № 12. https://doi.org/10.1242/dev.159103
- Masui S., Nakatake Y., Toyooka Y. et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells // Nat. Cell Biol. 2007. V. 9. № 6. P. 625–635. https://doi.org/10.1038/ncb1589
- Kopp J.L., Ormsbee B.D., Desler M., Rizzino A. Small increases in the level of Sox2 trigger the differentiation of mouse embryonic stem cells // Stem Cells. 2008. V. 26. № 4. P. 903–911. https://doi.org/10.1634/stemcells.2007-0951
- Tsai J.M., Nowak R.P., Ebert B.L., Fischer E.S. Targeted protein degradation: from mechanisms to clinic // Nat. Rev. Mol. Cell Biol. 2024. V. 25. № 9. P. 740–757. https://doi.org/10.1038/s41580-024-00729-9
- Nishimura K., Fukagawa T., Takisawa H. et al. An auxin-based degron system for the rapid depletion of proteins in nonplant cells // Nat. Methods. 2009. V. 6. № 12. P. 917–922. https://doi.org/10.1038/nmeth.1401
- Nabet B., Roberts J.M., Buckley D.L. et al. The dTAG system for immediate and target-specific protein degradation // Nat. Chem. Biol. 2018. V. 14. № 5. P. 431–441. https://doi.org/10.1038/s41589-018-0021-8
- Li S., Prasanna X., Salo V.T. et al. An efficient auxin-inducible degron system with low basal degradation in human cells // Nat. Methods. 2019. V. 16. № 9. P. 866–869. https://doi.org/10.1038/s41592-019-0512-x
- Bates L.E., Alves M.R.P., Silva J.C.R. Auxin-degron system identifies immediate mechanisms of OCT4 // Stem Cell Reports. 2021. V. 16. № 7. P. 1818–1831. https://doi.org/10.1016/j.stemcr.2021.05.016
- Yesbolatova A., Saito Y., Kitamoto N. et al. The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice // Nat. Commun. 2020. V. 11. № 1. P. 5701. https://doi.org/10.1038/s41467-020-19532-z
- Nabet B., Ferguson F.M., Seong B.K.A. et al. Rapid and direct control of target protein levels with VHL-recruiting dTAG molecules // Nat. Commun. 2020. V. 11. № 1. P. 4687. https://doi.org/10.1038/s41467-020-18377-w
- Liu N.Q., Maresca M., van den Brand T. et al. WAPL maintains a cohesin loading cycle to preserve cell-type-specific distal gene regulation // Nat. Genet. 2021. V. 53. № 1. P. 100–109. https://doi.org/10.1038/s41588-020-00744-4
- Maresca M., van den Brand T., Li H. et al. Pioneer activity distinguishes activating from non‐activating SOX2 binding sites // EMBO J. 2023. V. 42. № 20. https://doi.org/10.15252/embj.2022113150
- Abuhashem A., Lee A.S., Joyner A.L., Hadjantonakis A.K. Rapid and efficient degradation of endogenous proteins in vivo identifies stage-specific roles of RNA Pol II pausing in mammalian development // Dev. Cell. 2022. V. 57. № 8. P. 1068–1080.e6. https://doi.org/10.1016/j.devcel.2022.03.013
- Reményi A., Lins K., Nissen L.J. et al. Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers // Genes Dev. 2003. V. 17. № 16. P. 2048–2059. https://doi.org/10.1101/gad.269303
- Williams D.C., Cai M., Clore G.M. Molecular basis for synergistic transcriptional activation by Oct1 and Sox2 revealed from the solution structure of the 42- kDa Oct1.·Sox2.·Hoxb1-DNA ternary transcription factor complex // J. Biol. Chem. 2004. V. 279. № 2. P. 1449–1457. https://doi.org/10.1074/jbc.M309790200
- Jerabek S., Ng C.K., Wu G. et al. Changing POU dimerization preferences converts Oct6 into a pluripotency inducer // EMBO Rep. 2017. V. 18. № 2. P. 319–333. https://doi.org/10.15252/embr.201642958
- Malik V., Glaser L.V., Zimmer D. et al. Pluripotency reprogramming by competent and incompetent POU factors uncovers temporal dependency for Oct4 and Sox2 // Nat. Commun. 2019. V. 10. № 1. P. 3477. https://doi.org/10.1038/s41467-019-11054-7
- Bakhmet E.I., Tomilin A.N. Key features of the POU transcription factor Oct4 from an evolutionary perspective // Cell. Mol. Life Sci. 2021. V. 78. № 23. P. 7339–7353. https://doi.org/10.1007/s00018-021-03975-8
- Pan X., Cang X., Dan S. et al. Site-specific disruption of the Oct4/Sox2 protein interaction reveals coordinated mesendodermal differentiation and the epithelial-mesenchymal transition // J. Biol. Chem. 2016. V. 291. № 35. P. 18353–18369. https://doi.org/10.1074/jbc.M116.745414
- Esch D., Vahokoski J., Groves M.R. et al. A unique Oct4 interface is crucial for reprogramming to pluripotency // Nat. Cell Biol. 2013. V. 15. № 3. P. 295–301. https://doi.org/10.1038/ncb2680
- MacCarthy C.M., Wu G., Malik V. et al. Highly cooperative chimeric super-SOX induces naive pluripotency across species // Cell Stem Cell. 2024. V. 31. № 1. P. 127–147.e9. https://doi.org/10.1016/j.stem.2023.11.010
- Han D., Wu G., Chen R. et al. A balanced Oct4 interactome is crucial for maintaining pluripotency // Sci. Adv. 2022. V. 8. № 7. https://doi.org/10.1126/sciadv.abe4375
- Tan D.S., Chen Y., Gao Y. et al. Directed evolution of an enhanced POU reprogramming factor for cell fate engineering // Mol. Biol. Evol. 2021. V. 38. № 7. P. 2854–2868. https://doi.org/10.1093/molbev/msab075
- Jauch R., Aksoy I., Hutchins A.P. et al. Conversion of Sox17 into a pluripotency reprogramming factor by reengineering its association with Oct4 on DNA // Stem Cells. 2011. V. 29. № 6. P. 940–951. https://doi.org/10.1002/stem.639
- Aksoy I., Jauch R., Chen J. et al. Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm // EMBO J. 2013. V. 32. № 7. P. 938–953. https://doi.org/10.1038/emboj.2013.31
- Veerapandian V., Ackermann J.O., Srivastava Y. et al. Directed evolution of reprogramming factors by cell selection and sequencing // Stem Cell Reports. 2018. V. 11. № 2. P. 593–606. https://doi.org/10.1016/j.stemcr.2018.07.002
- Hu H., Ho D.H.H., Tan D.S. et al. Evaluation of the determinants for improved pluripotency induction and maintenance by engineered SOX17 // Nucl. Ac. Res. 2023. V. 51. № 17. P. 8934–8956. https://doi.org/10.1093/nar/gkad597
- Ho S.Y., Hu H., Ho D.H.H. et al. An acidic residue within the OCT4 dimerization interface of SOX17 is necessary and sufficient to overcome its pluripotency-inducing activity // Stem Cell Reports. 2025. V. 20. № 3. https://doi.org/10.1016/J.STEMCR.2025.102398
Supplementary files

