ЭПИГЕНЕТИЧЕСКИЕ ПОДХОДЫ К ДИАГНОСТИКЕ И ТЕРАПИИ COVID-19: ОСОБЕННОСТИ ДИФФЕРЕНЦИАЛЬНОГО ПРОФИЛЯ МЕТИЛИРОВАНИЯ ДНК КАК ПОТЕНЦИАЛЬНЫХ МИШЕНЕЙ ДЛЯ ТЕРАПИИ МЕТОДОМ РНК-ИНТЕРФЕРЕНЦИИ
- Авторы: Белопольская О.Б1, Боринская С.А1, Римская А.А1, Маркина Н.В1, Янковский Н.К1
-
Учреждения:
- Институт общей генетики им. Н.И. Вавилова Российской академии наук
- Выпуск: Том 61, № 12 (2025)
- Страницы: 31-43
- Раздел: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://bakhtiniada.ru/0016-6758/article/view/362707
- DOI: https://doi.org/10.7868/S3034510325120038
- ID: 362707
Цитировать
Аннотация
Ключевые слова
Об авторах
О. Б Белопольская
Институт общей генетики им. Н.И. Вавилова Российской академии наук
Email: olesya.belopolskaya@vigg.ru
Москва, Россия
С. А Боринская
Институт общей генетики им. Н.И. Вавилова Российской академии наукМосква, Россия
А. А Римская
Институт общей генетики им. Н.И. Вавилова Российской академии наукМосква, Россия
Н. В Маркина
Институт общей генетики им. Н.И. Вавилова Российской академии наукМосква, Россия
Н. К Янковский
Институт общей генетики им. Н.И. Вавилова Российской академии наукМосква, Россия
Список литературы
- coronavirus-graph.ru
- Lai C.C., Shih T.P., Ko W.C. et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges // Int. J. Antimicrob. Agents. 2020. V. 5. № 3. https://doi.org/ 10.1016/j.ijantimicag.2020.105924
- Devarakonda C.K.V., Meredith E., Ghosh M., Shapiro L.H. Coronavirus receptors as immune modulators // J. Immunol. 2021. V. 206. № 3. P. 923–929. https://doi.org/10.4049/jimmunol.2001062
- Kumar A., Narayan R.K., Prasoon P. et al. COVID-19 mechanisms in the human body – what we know so far // Front. Immunol. 2021. V. 12. https://doi.org/10.3389/fimmu.2021.693938
- Thunders M., Delahunt B. Gene of the month: TMPRSS2 (transmembrane serine protease 2) // J. Clin. Pathol. 2020. V. 73. № 12. P. 773–776. https://doi.org/10.1136/jclinpath-2020-206987
- Lucas S. Where does SARS-CoV-2 go to in man? // J. Pathol. 2022. V. 258. № 3. P. 211–212. https://doi.org/10.1002/path.6003
- Liu J., Li Y., Liu Q. et al. SARS-CoV-2 cell tropism and multiorgan infection // Cell Discov. 2021. V. 7. № 1. P. 17. https://doi.org/10.1038/s41421-021-00249-2
- Mehta P., McAuley D.F., Brown M.S. et al. COVID-19: Consider cytokine storm syndromes and immunosup-pression // Lancet. 2020. V. 395. № 10229.P. 1033–1034. https://doi.org/10.1016/S0140-6736(20)30628-0
- Saksena N., Bonam S.R., Miranda-Saksena M. Еpigenetic lens to visualize the severe acute respiratory syndrome coronavirus-2 (sars-cov-2) infection in covid-19 pandemic // Frontiers in Genetics. 2021. V. 12. https://doi.org/10.3389/fgene.2021.581726
- Masood K.I., Yameen M., Ashraf J. et al. Upregulated type I interferon responses in asymptomatic COVID-19 infection are associated with improved clinical outcome // Sci. Rep. 2021. V. 11. № 1. P. 22958. https://doi.org/10.1038/s41598-021-02489-4
- Khan A., Sergi C. SAMHD1 as the potential link between SARS-CoV-2 infection and neurological complications // Front. Neurol. 2020. V. 11. https://doi.org/10.3389/fneur.2020.562913
- Wang X., Xia H., Liu S. et al. Epigenetic regulation in antiviral innate immunity // Eur. J. Immunol. 2021. V. 51. № 7. P. 1641–1651. https://doi.org/10.1002/eji.202048975
- Russo C., Morello G., Malaguarnera R. et al. Candidate genes of SARS-CoV-2 gender susceptibility // Sci. Rep. 2021. V. 11. № 1. P. 21968. https://doi.org/10.1038/s41598-021-01131-7
- Leite M.M., Gonzalez-Galarza F.F., Silva B. et al. Predictive immunogenetic markers in COVID-19 // Hum. Immunol. 2021. V. 82. № 4. P. 247–254. https://doi.org/10.1016/j.humimm.2021.01.008
- Marzano F., Guerrini L., Pesole G. et al. Emerging roles of TRIM8 in health and disease // Cells. 2021. V. 10. Р. 3. https://doi.org/10.3390/cells10030561
- Arman K., Dalloul Z., Bozgeyik E. Emerging role of microRNAs and long non-coding RNAs in COVID-19 with implications to therapeutics // Gene. 2023. V. 861. https://doi.org/10.1016/j.gene.2023.147232
- Calzari L., Zanotti L., Inglese E. et al. Role of epigenetics in the clinical evolution of COVID-19 disease. Epigenome-wide association study identifies markers of severe outcome // Eur. J. Med. Res. 2023. V. 28. № 1. P. 81. https://doi.org/ 10.1186/s40001-023-01032-7
- Nyati K.K., Kishimoto T. Recent advances in the role of arid5a in immune diseases and cancer // Front. Immunol. 2021. V. 12. https://doi.org/10.3389/fimmu.2021.827611
- Schulte-Schrepping J., Reusch N., Paclik D. et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment // Cell. 2020. V. 182. № 6. P. 1419–1440. https://doi.org/10.1016/j.cell.2020.08.001
- Mardomi A., Mohammadi N., Khosroshahi H.T., Abediankenari S. An update on potentials and promises of T cell co-signaling molecules in transplantation // J. Cell. Physiol. 2020. V. 235. № 5. P. 4183–4197. https://doi.org/10.1002/jcp.29369
- Fricke-Galindo I., Falfan-Valencia R. Genetics insight for COVID-19 susceptibility and severity: A review // Front. Immunol. 2021. V. 12. https://doi.org/10.3389/fimmu.2021.622176
- Cao W., Birkenbach M., Chen S. Patterns of inflammatory cell infiltration and expression of STAT6 in the lungs of patients with COVID-19: An autopsy study // Appl. Immunohistochem. Mol. Morphol. 2022. V. 30. № 5. P. 350–357. https://doi.org/10.1097/PAI.0000000000001023
- Bartoszewski R., Dabrowski M., Jakiela B. et al. SARS-CoV-2 may regulate cellular responses through depletion of specific host miRNAs // Am. J. Physiol. Lung Cell. Mol. Physiol. 2020. V. 319. № 3. P. 444–455. https://doi.org/10.1152/ajplung.00252.2020
- Yang C.Y., Chen Y.H., Liu P.J. et al. The emerging role of miRNAs in the pathogenesis of COVID-19: Protective effects of nutraceutical polyphenolic compounds against SARS-CoV-2 infection // Int. J. Med. Sci. 2022. V. 19. № 8. P. 1340–1356. https://doi.org/10.7150/ijms.76168
- Balmeh N., Mahmoudi S., Mohammadi N., Karabedianhajiabadi A. Predicted therapeutic targets for COVID-19 disease by inhibiting SARS-CoV-2 and its related receptors // Informatics. Med. Unlocked. 2020. V. 20. https://doi.org/10.1016/j.imu.2020.100407
- Nersisyan S., Shkurnikov M., Turchinovich A. et al. Integrative analysis of miRNA and mRNA sequencing data reveals potential regulatory mechanisms of ACE2 and TMPRSS2 // PLoS One. 2020. V. 15. № 7. https://doi.org/10.1371/journal.pone.0235987
- Смелая Т.В., Кузовлев А.Н., Мороз В.В. и др. Молекулярно-генетические маркеры нозокомиальной пневмонии и острого респираторного дистресс-синдрома // Общая реаниматология. 2015. T. 11. № 3. C. 24–38. https://doi.org/10.15360/1813-9779-2015-3-24-38
- Donyavi T., Bokharaei-Salim F., Baghi H.B. et al. Acute and post-acute phase of COVID-19: Analyzing expression patterns of miRNA-29a-3p, 146a-3p, 155-5p, and let-7b-3p in PBMC // Int. Immuno-pharmacol. 2021. V. 97. https://doi.org/10.1016/j.intimp.2021.107641
- Fayyad-Kazan M., Makki R., Skafi N. et al. Circulating miRNAs: Potential diagnostic role for coronavirus disease 2019 (COVID-19) // Infect. Genet. Evol. 2021. V. 94. https://doi.org/10.1016/j.meegid.2021.105020
- De Gonzalo-Calvo D., Benítez I.D., Pinilla L. et al. Circulating microRNA profiles predict the severity of COVID-19 in hospitalized patients // Transl. Res. 2021. V. 21. P. 122–125. https://doi.org/10.1016/J.TRSL.2021.05.004
- Sabbatinelli J., Giuliani A., Matacchione G. et al. Decreased serum levels of the inflammaging marker miR-146a are associated with non-clinical response to tocilizumab in COVID-19 patients // Mech. Ageing Dev. 2021. V. 193. https://doi.org/10.1016/j.mad.2020.111413
- Narożna M., Rubiś B. Anti-sars-cov-2 strategies and the potential role of miRNA in the assessment of covid-19 morbidity, recurrence, and therapy // Int. J. Mol. Sci. 2021. V. 22. № 16.https://doi.org/10.3390/ijms22168663
- Sardar R., Satish D., Gupta D. Identification of novel sars-cov-2 drug targets by host micrornas and transcription factors co-regulatory interaction network analysis // Front. Genet. 2020. V. 11. https://doi.org/10.3389/fgene.2020.571274
- Schäfer A., Baric R.S. Epigenetic landscape during coronavirus infection // Pathogens. 2017. V. 6. https://doi.org/10.3390/pathogens6010008
- Khan M.A.A.K., Sany M.R.U., Islam M.S., Islam A.B.M.M.K. Epigenetic regulator miRNA pattern differences among SARS-CoV, SARS-CoV-2, and SARS-CoV-2 world-wide isolates delineated the mystery behind the epic pathogenicity and distinct clinical characteristics of pandemic COVID-19 // Front. Genet. 2020. V. 11. https://doi.org/10.3389/fgene.2020.00765
- Alfano M., Sidenius N., Blasi F., Poli G. The role of urokinase-type plasminogen activator (uPA)/uPA receptor in HIV-1 infection // J. Leukoc. Biol. 2003. V. 74. № 5. P. 750–756. https://doi.org/10.1189/jlb.0403176
- Konno H., Yamamoto T., Yamazaki K. et al. TRAF6 establishes innate immune responses by activating NF-kappaB and IRF7 upon sensing cytosolic viral RNA and DNA // PLoS One. 2009. V. 4. № 5. https://doi.org/10.1371/journal.pone.0005674
- Oldstone M.B., Teijaro J.R., Walsh K.B., Rosen H. Dissecting influenza virus pathogenesis uncovers a novel chemical approach to combat the infection // Virology. 2013. V. 435. № 1. P. 92–101. https://doi.org/10.1016/j.virol.2012.09.039
- Kovats S. Estrogen receptors regulate innate immune cells and signaling pathways // Cell Immunol. 2015. V. 294. № 2. P. 63–79. https://doi.org/10.1016/j.cellimm.2015.01.018
- Antoniak S., Owens A.P. 3rd, Baunacke M. et al. PAR-1 contributes to the innate immune response during viral infection // J. Clin. Invest. 2013. V. 123. № 3. P. 1310–1322. https://doi.org/10.1172/JCI66125
- Eddowes L.A., Al-Hourani K., Ramamurthy N. et al. Antiviral activity of bone morphogenetic proteins and activins // Nat. Microbiol. 2019. V. 4. № 2. P. 339–351. https://doi.org/10.1038/s41564-018-0301-9
- Lee Y.R., Tsai H.P., Yeh C.S. et al. RNA Interference approach is a good strategy against SARS-CoV-2 // Viruses. 2022. V. 15. № 1. https://doi.org/10.3390/v15010100
- Saadat K.A.S.M. RNAi-mediated siRNA sequences to combat the COVID-19 pandemic with the inhibition of SARS-CoV2 // Gene reports. 2022. V. 26. https://doi.org/10.1016/j.genrep.2022.101512
- Fopase R., Panda C., Rajendran A.P. et al. Potential of siRNA in COVID-19 therapy: Emphasis on in silico design and nanoparticles based delivery // Front. in Bioengineering and Biotechnol. 2023. V. 11. https://doi.org/10.3389/fbioe.2023.1112755
- Matarese A., Gambardella J., Sardu C., Santulli G. miR-98 regulates TMPRSS2 expression in human endothelial cells: Key implications for COVID-19 // Biomedicines. 2020. V. 8. № 11. https://doi.org/10.3390/biomedicines8110462
- Salimi-Jeda A., Abbassi S., Mousavizadeh A. et al. SARS-CoV-2: Current trends in emerging variants, pathogenesis, immune responses, potential therapeutic, and vaccine development strategies // Int. Immunopharmacol. 2021. V. 101. Pt. A. https://doi.org/10.1016/j.intimp.2021.108232
- Underwood P.C., Adler G.K. The renin angiotensin aldosterone system and insulin resistance in humans // Curr. Hypertens. Rep. 2013. V. 15. P. 59–70. https://doi.org/10.1007/s11906-012-0323-2
- Shukla A.K., Banerjee M. Angiotensin-converting-enzyme 2 and renin-angiotensin system inhibitors in COVID-19: An update // High Blood Press. Cardiovasc. Prev. 2021. V. 28. P. 129–139. https://doi.org/10.1007/s40292-021-00439-9
- Cao X., Song L.N., Yang J.K. ACE2 and energy metabolism: The connection between COVID-19 and chronic metabolic disorders // Clin. Sci. 2021. V. 135. P. 535–554. https://doi.org/10.1042/CS20200752
- Choudhary S., Sreenivasulu K., Mitra P. et al. Role of genetic variants and gene expression in the susceptibility and severity of COVID-19 // Ann. Lab. Med. 2020. V. 41. P. 129–138. https://doi.org/10.3343/alm.2021.41.2.129
- Xu X., Chen P., Wang J. et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission // Sci. China Life Sci. 2020. V. 63. № 3. P. 457–460. https://doi.org/10.1007/s11427-020-1637-5
- Zou X., Chen K., Zou J. et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection // Front. Med. 2020. V. 14. № 2. P. 185–192. https://doi.org/10.1007/s11684-020-0754-0
- Rotondo J.C., Martini F., Maritati M. et al. SARS-CoV-2 infection: New molecular, phylogenetic, and pathogenetic insights. Efficacy of current vaccines and the potential risk of variants // Viruses. 2021. V. 13. № 9. https://doi.org/10.3390/v13091687
- Biesalski H.K. Vitamin D deficiency and co-morbidities in COVID-19 patients – а fatal relationship? // NFS J. 2020. V. 20. P. 10–21. https://doi.org/10.1016/j.nfs.2020.06.001
- Razdan K., Singh K., Singh D. Vitamin D levels and COVID-19 susceptibility: Is there any correlation? // Med. Drug Discov. 2020. V. 7. https://doi.org/10.1016/j.medidd.2020.100051
- Chen X., Kang Y., Luo J. et al. Next-generation sequencing reveals the progression of COVID-19 // Front. Cell Infect. Microbiol. 2021. V. 11. https://doi.org/10.3389/fcimb.2021.632490
- Li M.-Y., Li L., Zhang Y., Wang X.-S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues // Infect. Dis. Poverty 2020. V. 9. № 1. P. 45. https://doi.org/10.1186/s40249-020-00662-x
- Mahmoud I.S., Jarrar Y.B., Alshaer W., Ismail S. SARS-CoV-2 entry in host cells-multiple targets for treatment and prevention // Biochimie. 2020. V. 175. P. 93–98. https://doi.org/10.1016/j.biochi.2020.05.012
- Rotondo J.C., Aquila G., Oton-Gonzalez L. et al. Methylation of SERPINA1 gene promoter may predict chronic obstructive pulmonary disease in patients affected by acute coronary syndrome // Clin. Epigenetics. 2021. V. 13. P. 79. https://doi.org/10.1186/s13148-021-01066-w
- Martini F., De Mattei M., Contini C., Tognon M.G. Potential use of alpha-1 anti-trypsin in the Covid-19 treatment // Front. Cell Dev. Biol. 2020. V. 23. https://doi.org/10.3389/fcell.2020.577528
- Baughn L.B., Sharma N., Elhaik E. et al. Targeting TMPRSS2 in SARS-CoV-2 infection // Mayo Clin. Proc. 2020. V. 95. P. 1989–1999. https://doi.org/10.1016/j.mayocp.2020.06.018
- Liu Q., Du J., Yu X. et al. miRNA-200c-3p is crucial in acute respiratory distress syndrome // Cell Discov. 2017. V. 3. P. 17021. https://doi.org/10.1038/celldisc.2017.21
- Bozgeyik I. Therapeutic potential of miRNAs targeting SARS-CoV-2 host cell receptor ACE2 // Meta Gene. 2021. V. 27. https://doi.org/10.1016/j.mgene.2020.100831
- Lu D., Chatterjee S., Xiao K. et al. MicroRNAs targeting the SARS-CoV-2 entry receptor ACE2 in cardiomyocytes // J. Mol. Cell. Cardiol. 2020. V. 148. P. 46–49. https://doi.org/10.1016/j.yjmcc.2020.08.017
- Guo J., Huang Z., Lin L., Lv J. Coronavirus disease 2019 (COVID-19) and cardiovascular disease: Aviewpoint on the potential influence of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers on onset and severity of severe acute respiratory syndrome coronavirus 2 infection // J. Am. Heart Assoc. 2020. V. 9. https://doi.org/10.1161/JAHA.120.016219
- Widiasta A., Sribudiani Y., Nugrahapraja H. et al. Potential role of ACE2-related microRNAs in COVID-19-associated nephropathy // Noncoding RNA Res. 2020. V. 5. P. 153–166. https://doi.org/10.1016/j.ncrna.2020.09.001
- Zhang C., Wang J., Ma X. et al. ACE2-EPC-EXs protect ageing ECs against hypoxia/reoxygenation-induced injury through the miR-18a/Nox2/ROS pathway // J. Cell Mol. Med. 2018. V. 22. P. 1873–1882. https://doi.org/10.1111/jcmm.13471
- Rao S., Lau A., So H.C. Exploring diseases/traits and blood proteins causally related to expression of ACE2, the putative receptor of SARS-CoV-2: A mendelian randomization analysis highlights tentative relevance of diabetes-related traits // Diabetes Care. 2020. V. 43. № 7. P. 1416–1426. https://doi.org/10.2337/dc20-0643
- Radovic N., Nikolić Jakoba N., Petrović N. et al. MicroRNA-146a and microRNA-155 as novel crevi-cular fluid biomarkers for periodontitis in non-diabetic and type 2 diabetic patients // J. Clin. Periodontol. 2018. V. 45. № 6. P. 663–671. https://doi.org/10.1111/jcpe.12888
- Roganovic J.R. microRNA-146a and -155, upregulated by periodontitis and type 2 diabetes in oral fluids, are predicted to regulate SARS-CoV-2 oral receptors genes // J. Periodontol. 2020. V. 92. № 7. P. 35–43. https://doi.org/10.1002/JPER.20-0623
- Badry A., Jaspers V.L.B., Waugh C.A. Environ-mental pollutants modulate RNA and DNA virus-activated miRNA-155 expression and innate immune system responses: Insights into new immunomodulative mechanisms // J. Immunotoxicol. 2020. V. 17. P. 86–93. https://doi.org/10.1080/1547691X.2020.1740838
- Wyler E., Mösbauer K., Franke V. et al. Transcriptomic profiling of SARS-CoV-2 infected human cell lines identifies HSP90 as target for COVID-19 therapy // Science. 2021. V. 24. № 3. https://doi.org/10.1016/j.isci.2021.102151
- Pierce J.B., Simion V., Icli B. et al. Computational analysis of targeting SARS-CoV-2, viral entry proteins ACE2 and tmprss2, and interferon genes by host microRNAs // Genes (Basel). 2020. V. 11. № 11. https://doi.org/10.3390/genes11111354
- Teodori L., Sestili P., Madiai V. et al. MicroRNAs bioinformatics analyses identifying HDAC pathway as a putative target for existing anti-COVID-19 therapeutics // Front. Pharmacol. 2020. V. 11. https://doi.org/10.3389/fphar.2020.582003
- Calderon-Dominguez M., Trejo-Gutierrez E., González-Rovira A. et al. Serum microRNAs targeting ACE2 and RAB14 genes distinguish asymptomatic from critical COVID-19 patients // Mol. Ther. Nucleic Acids. 2022. V. 29. P. 76–87. https://doi.org/10.1016/j.omtn.2022.06.006
- Giovannoni F., Quintana F.J. SARS-CoV-2-induced lung pathology: AHR as a candidate therapeutic tar-get // Cell Res. 2021. V. 31. P. 1–2. https://doi.org/10.1038/s41422-020-00447-9
- Giovannoni F., Bosch I., Polonio C.M. et al. AHR is a zika virus host factor and a candidate target for antiviral therapy // Nat. Neurosci. 2020. V. 23. P. 939–951. https://doi.org/10.1038/s41593-020-0664-0
- Andrade A.F., Borges K.S., Castro-Gamero A.M. et al. Zebularine induces chemosensitization to methotrexate and efficiently decreases AhR gene methylation in childhood acute lymphoblastic leukemia cells // Anticancer Drugs. 2014. V. 25. № 1. P. 72–81. https://doi.org/10.1097/CAD.0000000000000028
- Lv J., Yu P., Wang Z. et al. ACE2 expression is regulated by AhR in SARS-CoV-2-infected macaques // Cell Mol. Immunol. 2021. V. 18. № 5. P. 1308–1310. https://doi.org/10.1038/s41423-021-00672-1
- Zhong W., Li B., Xu Y. et al. Hypermethylation of the micro-RNA 145 promoter is the key regulator for NLRP3 inflammasome-induced activation and plaque formation // JACC Basic Transl. Sci. 2018. V. 3. № 5. P. 604–624. https://doi.org/10.1016/j.jacbts.2018.06.004.
- Huai W., Zhao R., Song H. et al. Aryl hydrocarbon receptor negatively regulates NLRP3 inflammasome activity by inhibiting NLRP3 transcription // Nat. Commun. 2014. V. 5. https://doi.org/10.1038/ncomms5738
- Castro de Moura M., Davalos V., Planas-Serra L. et al. Epigenome-wide association study of COVID-19 severity with respiratory failure // EBioMedicine. 2021. V. 66. https://doi.org/10.1016/j.ebiom.2021.103339
- Sagulenko V., Thygesen S.J., Sester D.P. et al. AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC // Cell Death Differ. 2013. V. 20. № 9. P. 1149–1160. https://doi.org/10.1038/cdd.2013.37
- Xia S., Zhang Z., Magupalli V.G., Pablo J.L. et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1 // Nature. 2021. V. 593. № 7860. P. 607–611. https://doi.org/10.1038/s41586-021-03478-3
- Ediz C., Tavukcu H.H., Akan S. et al. Is there any association of COVID-19 with testicular pain and epididymo-orchitis? // Int. J. Clin. Pract. 2021. V. 75. № 3. https://doi.org/10.1111/ijcp.13753
- Kgatle M.M., Lawal I.O., Mashabela G. et al. COVID-19 is a multi-organ aggressor: Epigenetic and clinical marks // Frontiers in Immunology. 2021. V. 12. https://doi.org/10.3389/fimmu.2021.752380
- Dai L., Zhang G., Cheng Z. et al. Knockdown of LncRNA MALAT1 contributes to the suppression of inflammatory responses by up-regulating miR-146a in LPS-induced acute lung injury // Connect Tissue Res. 2018. V. 59. № 6. P. 581–592. https://doi.org/10.1080/03008207.2018.1439480
- Carvelli J., Demaria O., Vély F. et al. Association of COVID-19 inflammation with activation of the C5a–C5aR1 axis // Nature. 2020. V. 588. P. 146–150. https://doi.org/10.1038/s41586-020-2600-6
- Totura A.L., Baric R.S. SARS coronavirus pathogenesis: Host innate immune responses and viral antagonism of interferon // Curr. Opin. Virol. 2012. V. 2. № 3. P. 264–275. https://doi.org/10.1016/j.coviro.2012.04.004
- Bouayad A. Innate immune evasion by SARS-CoV-2: Сomparison with SARS-CoV // Rev. Med. Virol. 2020. V. 30. № 6. P. 1–9. https://doi.org/10.1002/rmv.2135
- Cuevas A.M., Clark J.M., Potter J.J. Increased TLR/MyD88 signaling in patients with obesity: Is there a link to COVID-19 disease severity? // Int. J. Obes. 2021. V. 45. № 5. P. 1152–1154. https://doi.org/10.1038/s41366-021-00768-8
- Da Silva S.J.R., do Nascimento J.C.F., Germano Mendes R.P. et al. Two years into the COVID-19 pandemic: Lessons learned // ACS Infect. Dis. 2022. V. 8. № 9. P. 1758–1814. https://doi.org/10.1021/acsinfecdis.2c00204
- Uludağ H., Parent K., Aliabadi H.M., Haddadi A. Prospects for RNAi therapy of COVID-19 // Front. Bioeng. Biotechnol. 2020. V. 8. https://doi.org/10.3389/fbioe.2020.00916
- Ferreira-Gomes M., Kruglov A., Durek P. et al. SARS-CoV-2 in severe COVID-19 induces a TGF-β-dominated chronic immune response that does not target itself // Nat. Commun. 2021. V. 12. № 1. P. 1961. https://doi.org/10.1038/s41467-021-22210-3
- Lechowicz K., Drożdżal S., Machaj F. et al. COVID-19: Тhe potential treatment of pulmonary fibrosis associated with SARS-CoV-2 infection // J. Clin. Med. 2020. V. 9. № 6. https://doi.org/10.3390/jcm9061917
- Mousavi S.R., Sajjadi M.S., Khosravian F. et al. Dysregulation of RNA interference components in COVID-19 patients // BMC Res. Notes. 2021. V. 14. № 1. P. 401. https://doi.org/10.1186/s13104-021-05816-0
Дополнительные файлы


