Epigenetic Approaches to Diagnosis and Therapy of COVID-19: Features of Differential DNA Methylation Profile as Potential Targets for Therapy by the Method of RNA Interference
- Autores: Belopolskaya O.B1, Borinskaya S.A1, Rimskaya A.A1, Markina N.V1, Yankovsky N.K1
-
Afiliações:
- Vavilov Institute of General Genetics Russian Academy of Sciences
- Edição: Volume 61, Nº 12 (2025)
- Páginas: 31-43
- Seção: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://bakhtiniada.ru/0016-6758/article/view/362707
- DOI: https://doi.org/10.7868/S3034510325120038
- ID: 362707
Citar
Resumo
Palavras-chave
Sobre autores
O. Belopolskaya
Vavilov Institute of General Genetics Russian Academy of Sciences
Email: olesya.belopolskaya@vigg.ru
Moscow, Russia
S. Borinskaya
Vavilov Institute of General Genetics Russian Academy of SciencesMoscow, Russia
A. Rimskaya
Vavilov Institute of General Genetics Russian Academy of SciencesMoscow, Russia
N. Markina
Vavilov Institute of General Genetics Russian Academy of SciencesMoscow, Russia
N. Yankovsky
Vavilov Institute of General Genetics Russian Academy of SciencesMoscow, Russia
Bibliografia
- coronavirus-graph.ru
- Lai C.C., Shih T.P., Ko W.C. et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges // Int. J. Antimicrob. Agents. 2020. V. 5. № 3. https://doi.org/ 10.1016/j.ijantimicag.2020.105924
- Devarakonda C.K.V., Meredith E., Ghosh M., Shapiro L.H. Coronavirus receptors as immune modulators // J. Immunol. 2021. V. 206. № 3. P. 923–929. https://doi.org/10.4049/jimmunol.2001062
- Kumar A., Narayan R.K., Prasoon P. et al. COVID-19 mechanisms in the human body – what we know so far // Front. Immunol. 2021. V. 12. https://doi.org/10.3389/fimmu.2021.693938
- Thunders M., Delahunt B. Gene of the month: TMPRSS2 (transmembrane serine protease 2) // J. Clin. Pathol. 2020. V. 73. № 12. P. 773–776. https://doi.org/10.1136/jclinpath-2020-206987
- Lucas S. Where does SARS-CoV-2 go to in man? // J. Pathol. 2022. V. 258. № 3. P. 211–212. https://doi.org/10.1002/path.6003
- Liu J., Li Y., Liu Q. et al. SARS-CoV-2 cell tropism and multiorgan infection // Cell Discov. 2021. V. 7. № 1. P. 17. https://doi.org/10.1038/s41421-021-00249-2
- Mehta P., McAuley D.F., Brown M.S. et al. COVID-19: Consider cytokine storm syndromes and immunosup-pression // Lancet. 2020. V. 395. № 10229.P. 1033–1034. https://doi.org/10.1016/S0140-6736(20)30628-0
- Saksena N., Bonam S.R., Miranda-Saksena M. Еpigenetic lens to visualize the severe acute respiratory syndrome coronavirus-2 (sars-cov-2) infection in covid-19 pandemic // Frontiers in Genetics. 2021. V. 12. https://doi.org/10.3389/fgene.2021.581726
- Masood K.I., Yameen M., Ashraf J. et al. Upregulated type I interferon responses in asymptomatic COVID-19 infection are associated with improved clinical outcome // Sci. Rep. 2021. V. 11. № 1. P. 22958. https://doi.org/10.1038/s41598-021-02489-4
- Khan A., Sergi C. SAMHD1 as the potential link between SARS-CoV-2 infection and neurological complications // Front. Neurol. 2020. V. 11. https://doi.org/10.3389/fneur.2020.562913
- Wang X., Xia H., Liu S. et al. Epigenetic regulation in antiviral innate immunity // Eur. J. Immunol. 2021. V. 51. № 7. P. 1641–1651. https://doi.org/10.1002/eji.202048975
- Russo C., Morello G., Malaguarnera R. et al. Candidate genes of SARS-CoV-2 gender susceptibility // Sci. Rep. 2021. V. 11. № 1. P. 21968. https://doi.org/10.1038/s41598-021-01131-7
- Leite M.M., Gonzalez-Galarza F.F., Silva B. et al. Predictive immunogenetic markers in COVID-19 // Hum. Immunol. 2021. V. 82. № 4. P. 247–254. https://doi.org/10.1016/j.humimm.2021.01.008
- Marzano F., Guerrini L., Pesole G. et al. Emerging roles of TRIM8 in health and disease // Cells. 2021. V. 10. Р. 3. https://doi.org/10.3390/cells10030561
- Arman K., Dalloul Z., Bozgeyik E. Emerging role of microRNAs and long non-coding RNAs in COVID-19 with implications to therapeutics // Gene. 2023. V. 861. https://doi.org/10.1016/j.gene.2023.147232
- Calzari L., Zanotti L., Inglese E. et al. Role of epigenetics in the clinical evolution of COVID-19 disease. Epigenome-wide association study identifies markers of severe outcome // Eur. J. Med. Res. 2023. V. 28. № 1. P. 81. https://doi.org/ 10.1186/s40001-023-01032-7
- Nyati K.K., Kishimoto T. Recent advances in the role of arid5a in immune diseases and cancer // Front. Immunol. 2021. V. 12. https://doi.org/10.3389/fimmu.2021.827611
- Schulte-Schrepping J., Reusch N., Paclik D. et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment // Cell. 2020. V. 182. № 6. P. 1419–1440. https://doi.org/10.1016/j.cell.2020.08.001
- Mardomi A., Mohammadi N., Khosroshahi H.T., Abediankenari S. An update on potentials and promises of T cell co-signaling molecules in transplantation // J. Cell. Physiol. 2020. V. 235. № 5. P. 4183–4197. https://doi.org/10.1002/jcp.29369
- Fricke-Galindo I., Falfan-Valencia R. Genetics insight for COVID-19 susceptibility and severity: A review // Front. Immunol. 2021. V. 12. https://doi.org/10.3389/fimmu.2021.622176
- Cao W., Birkenbach M., Chen S. Patterns of inflammatory cell infiltration and expression of STAT6 in the lungs of patients with COVID-19: An autopsy study // Appl. Immunohistochem. Mol. Morphol. 2022. V. 30. № 5. P. 350–357. https://doi.org/10.1097/PAI.0000000000001023
- Bartoszewski R., Dabrowski M., Jakiela B. et al. SARS-CoV-2 may regulate cellular responses through depletion of specific host miRNAs // Am. J. Physiol. Lung Cell. Mol. Physiol. 2020. V. 319. № 3. P. 444–455. https://doi.org/10.1152/ajplung.00252.2020
- Yang C.Y., Chen Y.H., Liu P.J. et al. The emerging role of miRNAs in the pathogenesis of COVID-19: Protective effects of nutraceutical polyphenolic compounds against SARS-CoV-2 infection // Int. J. Med. Sci. 2022. V. 19. № 8. P. 1340–1356. https://doi.org/10.7150/ijms.76168
- Balmeh N., Mahmoudi S., Mohammadi N., Karabedianhajiabadi A. Predicted therapeutic targets for COVID-19 disease by inhibiting SARS-CoV-2 and its related receptors // Informatics. Med. Unlocked. 2020. V. 20. https://doi.org/10.1016/j.imu.2020.100407
- Nersisyan S., Shkurnikov M., Turchinovich A. et al. Integrative analysis of miRNA and mRNA sequencing data reveals potential regulatory mechanisms of ACE2 and TMPRSS2 // PLoS One. 2020. V. 15. № 7. https://doi.org/10.1371/journal.pone.0235987
- Смелая Т.В., Кузовлев А.Н., Мороз В.В. и др. Молекулярно-генетические маркеры нозокомиальной пневмонии и острого респираторного дистресс-синдрома // Общая реаниматология. 2015. T. 11. № 3. C. 24–38. https://doi.org/10.15360/1813-9779-2015-3-24-38
- Donyavi T., Bokharaei-Salim F., Baghi H.B. et al. Acute and post-acute phase of COVID-19: Analyzing expression patterns of miRNA-29a-3p, 146a-3p, 155-5p, and let-7b-3p in PBMC // Int. Immuno-pharmacol. 2021. V. 97. https://doi.org/10.1016/j.intimp.2021.107641
- Fayyad-Kazan M., Makki R., Skafi N. et al. Circulating miRNAs: Potential diagnostic role for coronavirus disease 2019 (COVID-19) // Infect. Genet. Evol. 2021. V. 94. https://doi.org/10.1016/j.meegid.2021.105020
- De Gonzalo-Calvo D., Benítez I.D., Pinilla L. et al. Circulating microRNA profiles predict the severity of COVID-19 in hospitalized patients // Transl. Res. 2021. V. 21. P. 122–125. https://doi.org/10.1016/J.TRSL.2021.05.004
- Sabbatinelli J., Giuliani A., Matacchione G. et al. Decreased serum levels of the inflammaging marker miR-146a are associated with non-clinical response to tocilizumab in COVID-19 patients // Mech. Ageing Dev. 2021. V. 193. https://doi.org/10.1016/j.mad.2020.111413
- Narożna M., Rubiś B. Anti-sars-cov-2 strategies and the potential role of miRNA in the assessment of covid-19 morbidity, recurrence, and therapy // Int. J. Mol. Sci. 2021. V. 22. № 16.https://doi.org/10.3390/ijms22168663
- Sardar R., Satish D., Gupta D. Identification of novel sars-cov-2 drug targets by host micrornas and transcription factors co-regulatory interaction network analysis // Front. Genet. 2020. V. 11. https://doi.org/10.3389/fgene.2020.571274
- Schäfer A., Baric R.S. Epigenetic landscape during coronavirus infection // Pathogens. 2017. V. 6. https://doi.org/10.3390/pathogens6010008
- Khan M.A.A.K., Sany M.R.U., Islam M.S., Islam A.B.M.M.K. Epigenetic regulator miRNA pattern differences among SARS-CoV, SARS-CoV-2, and SARS-CoV-2 world-wide isolates delineated the mystery behind the epic pathogenicity and distinct clinical characteristics of pandemic COVID-19 // Front. Genet. 2020. V. 11. https://doi.org/10.3389/fgene.2020.00765
- Alfano M., Sidenius N., Blasi F., Poli G. The role of urokinase-type plasminogen activator (uPA)/uPA receptor in HIV-1 infection // J. Leukoc. Biol. 2003. V. 74. № 5. P. 750–756. https://doi.org/10.1189/jlb.0403176
- Konno H., Yamamoto T., Yamazaki K. et al. TRAF6 establishes innate immune responses by activating NF-kappaB and IRF7 upon sensing cytosolic viral RNA and DNA // PLoS One. 2009. V. 4. № 5. https://doi.org/10.1371/journal.pone.0005674
- Oldstone M.B., Teijaro J.R., Walsh K.B., Rosen H. Dissecting influenza virus pathogenesis uncovers a novel chemical approach to combat the infection // Virology. 2013. V. 435. № 1. P. 92–101. https://doi.org/10.1016/j.virol.2012.09.039
- Kovats S. Estrogen receptors regulate innate immune cells and signaling pathways // Cell Immunol. 2015. V. 294. № 2. P. 63–79. https://doi.org/10.1016/j.cellimm.2015.01.018
- Antoniak S., Owens A.P. 3rd, Baunacke M. et al. PAR-1 contributes to the innate immune response during viral infection // J. Clin. Invest. 2013. V. 123. № 3. P. 1310–1322. https://doi.org/10.1172/JCI66125
- Eddowes L.A., Al-Hourani K., Ramamurthy N. et al. Antiviral activity of bone morphogenetic proteins and activins // Nat. Microbiol. 2019. V. 4. № 2. P. 339–351. https://doi.org/10.1038/s41564-018-0301-9
- Lee Y.R., Tsai H.P., Yeh C.S. et al. RNA Interference approach is a good strategy against SARS-CoV-2 // Viruses. 2022. V. 15. № 1. https://doi.org/10.3390/v15010100
- Saadat K.A.S.M. RNAi-mediated siRNA sequences to combat the COVID-19 pandemic with the inhibition of SARS-CoV2 // Gene reports. 2022. V. 26. https://doi.org/10.1016/j.genrep.2022.101512
- Fopase R., Panda C., Rajendran A.P. et al. Potential of siRNA in COVID-19 therapy: Emphasis on in silico design and nanoparticles based delivery // Front. in Bioengineering and Biotechnol. 2023. V. 11. https://doi.org/10.3389/fbioe.2023.1112755
- Matarese A., Gambardella J., Sardu C., Santulli G. miR-98 regulates TMPRSS2 expression in human endothelial cells: Key implications for COVID-19 // Biomedicines. 2020. V. 8. № 11. https://doi.org/10.3390/biomedicines8110462
- Salimi-Jeda A., Abbassi S., Mousavizadeh A. et al. SARS-CoV-2: Current trends in emerging variants, pathogenesis, immune responses, potential therapeutic, and vaccine development strategies // Int. Immunopharmacol. 2021. V. 101. Pt. A. https://doi.org/10.1016/j.intimp.2021.108232
- Underwood P.C., Adler G.K. The renin angiotensin aldosterone system and insulin resistance in humans // Curr. Hypertens. Rep. 2013. V. 15. P. 59–70. https://doi.org/10.1007/s11906-012-0323-2
- Shukla A.K., Banerjee M. Angiotensin-converting-enzyme 2 and renin-angiotensin system inhibitors in COVID-19: An update // High Blood Press. Cardiovasc. Prev. 2021. V. 28. P. 129–139. https://doi.org/10.1007/s40292-021-00439-9
- Cao X., Song L.N., Yang J.K. ACE2 and energy metabolism: The connection between COVID-19 and chronic metabolic disorders // Clin. Sci. 2021. V. 135. P. 535–554. https://doi.org/10.1042/CS20200752
- Choudhary S., Sreenivasulu K., Mitra P. et al. Role of genetic variants and gene expression in the susceptibility and severity of COVID-19 // Ann. Lab. Med. 2020. V. 41. P. 129–138. https://doi.org/10.3343/alm.2021.41.2.129
- Xu X., Chen P., Wang J. et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission // Sci. China Life Sci. 2020. V. 63. № 3. P. 457–460. https://doi.org/10.1007/s11427-020-1637-5
- Zou X., Chen K., Zou J. et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection // Front. Med. 2020. V. 14. № 2. P. 185–192. https://doi.org/10.1007/s11684-020-0754-0
- Rotondo J.C., Martini F., Maritati M. et al. SARS-CoV-2 infection: New molecular, phylogenetic, and pathogenetic insights. Efficacy of current vaccines and the potential risk of variants // Viruses. 2021. V. 13. № 9. https://doi.org/10.3390/v13091687
- Biesalski H.K. Vitamin D deficiency and co-morbidities in COVID-19 patients – а fatal relationship? // NFS J. 2020. V. 20. P. 10–21. https://doi.org/10.1016/j.nfs.2020.06.001
- Razdan K., Singh K., Singh D. Vitamin D levels and COVID-19 susceptibility: Is there any correlation? // Med. Drug Discov. 2020. V. 7. https://doi.org/10.1016/j.medidd.2020.100051
- Chen X., Kang Y., Luo J. et al. Next-generation sequencing reveals the progression of COVID-19 // Front. Cell Infect. Microbiol. 2021. V. 11. https://doi.org/10.3389/fcimb.2021.632490
- Li M.-Y., Li L., Zhang Y., Wang X.-S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues // Infect. Dis. Poverty 2020. V. 9. № 1. P. 45. https://doi.org/10.1186/s40249-020-00662-x
- Mahmoud I.S., Jarrar Y.B., Alshaer W., Ismail S. SARS-CoV-2 entry in host cells-multiple targets for treatment and prevention // Biochimie. 2020. V. 175. P. 93–98. https://doi.org/10.1016/j.biochi.2020.05.012
- Rotondo J.C., Aquila G., Oton-Gonzalez L. et al. Methylation of SERPINA1 gene promoter may predict chronic obstructive pulmonary disease in patients affected by acute coronary syndrome // Clin. Epigenetics. 2021. V. 13. P. 79. https://doi.org/10.1186/s13148-021-01066-w
- Martini F., De Mattei M., Contini C., Tognon M.G. Potential use of alpha-1 anti-trypsin in the Covid-19 treatment // Front. Cell Dev. Biol. 2020. V. 23. https://doi.org/10.3389/fcell.2020.577528
- Baughn L.B., Sharma N., Elhaik E. et al. Targeting TMPRSS2 in SARS-CoV-2 infection // Mayo Clin. Proc. 2020. V. 95. P. 1989–1999. https://doi.org/10.1016/j.mayocp.2020.06.018
- Liu Q., Du J., Yu X. et al. miRNA-200c-3p is crucial in acute respiratory distress syndrome // Cell Discov. 2017. V. 3. P. 17021. https://doi.org/10.1038/celldisc.2017.21
- Bozgeyik I. Therapeutic potential of miRNAs targeting SARS-CoV-2 host cell receptor ACE2 // Meta Gene. 2021. V. 27. https://doi.org/10.1016/j.mgene.2020.100831
- Lu D., Chatterjee S., Xiao K. et al. MicroRNAs targeting the SARS-CoV-2 entry receptor ACE2 in cardiomyocytes // J. Mol. Cell. Cardiol. 2020. V. 148. P. 46–49. https://doi.org/10.1016/j.yjmcc.2020.08.017
- Guo J., Huang Z., Lin L., Lv J. Coronavirus disease 2019 (COVID-19) and cardiovascular disease: Aviewpoint on the potential influence of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers on onset and severity of severe acute respiratory syndrome coronavirus 2 infection // J. Am. Heart Assoc. 2020. V. 9. https://doi.org/10.1161/JAHA.120.016219
- Widiasta A., Sribudiani Y., Nugrahapraja H. et al. Potential role of ACE2-related microRNAs in COVID-19-associated nephropathy // Noncoding RNA Res. 2020. V. 5. P. 153–166. https://doi.org/10.1016/j.ncrna.2020.09.001
- Zhang C., Wang J., Ma X. et al. ACE2-EPC-EXs protect ageing ECs against hypoxia/reoxygenation-induced injury through the miR-18a/Nox2/ROS pathway // J. Cell Mol. Med. 2018. V. 22. P. 1873–1882. https://doi.org/10.1111/jcmm.13471
- Rao S., Lau A., So H.C. Exploring diseases/traits and blood proteins causally related to expression of ACE2, the putative receptor of SARS-CoV-2: A mendelian randomization analysis highlights tentative relevance of diabetes-related traits // Diabetes Care. 2020. V. 43. № 7. P. 1416–1426. https://doi.org/10.2337/dc20-0643
- Radovic N., Nikolić Jakoba N., Petrović N. et al. MicroRNA-146a and microRNA-155 as novel crevi-cular fluid biomarkers for periodontitis in non-diabetic and type 2 diabetic patients // J. Clin. Periodontol. 2018. V. 45. № 6. P. 663–671. https://doi.org/10.1111/jcpe.12888
- Roganovic J.R. microRNA-146a and -155, upregulated by periodontitis and type 2 diabetes in oral fluids, are predicted to regulate SARS-CoV-2 oral receptors genes // J. Periodontol. 2020. V. 92. № 7. P. 35–43. https://doi.org/10.1002/JPER.20-0623
- Badry A., Jaspers V.L.B., Waugh C.A. Environ-mental pollutants modulate RNA and DNA virus-activated miRNA-155 expression and innate immune system responses: Insights into new immunomodulative mechanisms // J. Immunotoxicol. 2020. V. 17. P. 86–93. https://doi.org/10.1080/1547691X.2020.1740838
- Wyler E., Mösbauer K., Franke V. et al. Transcriptomic profiling of SARS-CoV-2 infected human cell lines identifies HSP90 as target for COVID-19 therapy // Science. 2021. V. 24. № 3. https://doi.org/10.1016/j.isci.2021.102151
- Pierce J.B., Simion V., Icli B. et al. Computational analysis of targeting SARS-CoV-2, viral entry proteins ACE2 and tmprss2, and interferon genes by host microRNAs // Genes (Basel). 2020. V. 11. № 11. https://doi.org/10.3390/genes11111354
- Teodori L., Sestili P., Madiai V. et al. MicroRNAs bioinformatics analyses identifying HDAC pathway as a putative target for existing anti-COVID-19 therapeutics // Front. Pharmacol. 2020. V. 11. https://doi.org/10.3389/fphar.2020.582003
- Calderon-Dominguez M., Trejo-Gutierrez E., González-Rovira A. et al. Serum microRNAs targeting ACE2 and RAB14 genes distinguish asymptomatic from critical COVID-19 patients // Mol. Ther. Nucleic Acids. 2022. V. 29. P. 76–87. https://doi.org/10.1016/j.omtn.2022.06.006
- Giovannoni F., Quintana F.J. SARS-CoV-2-induced lung pathology: AHR as a candidate therapeutic tar-get // Cell Res. 2021. V. 31. P. 1–2. https://doi.org/10.1038/s41422-020-00447-9
- Giovannoni F., Bosch I., Polonio C.M. et al. AHR is a zika virus host factor and a candidate target for antiviral therapy // Nat. Neurosci. 2020. V. 23. P. 939–951. https://doi.org/10.1038/s41593-020-0664-0
- Andrade A.F., Borges K.S., Castro-Gamero A.M. et al. Zebularine induces chemosensitization to methotrexate and efficiently decreases AhR gene methylation in childhood acute lymphoblastic leukemia cells // Anticancer Drugs. 2014. V. 25. № 1. P. 72–81. https://doi.org/10.1097/CAD.0000000000000028
- Lv J., Yu P., Wang Z. et al. ACE2 expression is regulated by AhR in SARS-CoV-2-infected macaques // Cell Mol. Immunol. 2021. V. 18. № 5. P. 1308–1310. https://doi.org/10.1038/s41423-021-00672-1
- Zhong W., Li B., Xu Y. et al. Hypermethylation of the micro-RNA 145 promoter is the key regulator for NLRP3 inflammasome-induced activation and plaque formation // JACC Basic Transl. Sci. 2018. V. 3. № 5. P. 604–624. https://doi.org/10.1016/j.jacbts.2018.06.004.
- Huai W., Zhao R., Song H. et al. Aryl hydrocarbon receptor negatively regulates NLRP3 inflammasome activity by inhibiting NLRP3 transcription // Nat. Commun. 2014. V. 5. https://doi.org/10.1038/ncomms5738
- Castro de Moura M., Davalos V., Planas-Serra L. et al. Epigenome-wide association study of COVID-19 severity with respiratory failure // EBioMedicine. 2021. V. 66. https://doi.org/10.1016/j.ebiom.2021.103339
- Sagulenko V., Thygesen S.J., Sester D.P. et al. AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC // Cell Death Differ. 2013. V. 20. № 9. P. 1149–1160. https://doi.org/10.1038/cdd.2013.37
- Xia S., Zhang Z., Magupalli V.G., Pablo J.L. et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1 // Nature. 2021. V. 593. № 7860. P. 607–611. https://doi.org/10.1038/s41586-021-03478-3
- Ediz C., Tavukcu H.H., Akan S. et al. Is there any association of COVID-19 with testicular pain and epididymo-orchitis? // Int. J. Clin. Pract. 2021. V. 75. № 3. https://doi.org/10.1111/ijcp.13753
- Kgatle M.M., Lawal I.O., Mashabela G. et al. COVID-19 is a multi-organ aggressor: Epigenetic and clinical marks // Frontiers in Immunology. 2021. V. 12. https://doi.org/10.3389/fimmu.2021.752380
- Dai L., Zhang G., Cheng Z. et al. Knockdown of LncRNA MALAT1 contributes to the suppression of inflammatory responses by up-regulating miR-146a in LPS-induced acute lung injury // Connect Tissue Res. 2018. V. 59. № 6. P. 581–592. https://doi.org/10.1080/03008207.2018.1439480
- Carvelli J., Demaria O., Vély F. et al. Association of COVID-19 inflammation with activation of the C5a–C5aR1 axis // Nature. 2020. V. 588. P. 146–150. https://doi.org/10.1038/s41586-020-2600-6
- Totura A.L., Baric R.S. SARS coronavirus pathogenesis: Host innate immune responses and viral antagonism of interferon // Curr. Opin. Virol. 2012. V. 2. № 3. P. 264–275. https://doi.org/10.1016/j.coviro.2012.04.004
- Bouayad A. Innate immune evasion by SARS-CoV-2: Сomparison with SARS-CoV // Rev. Med. Virol. 2020. V. 30. № 6. P. 1–9. https://doi.org/10.1002/rmv.2135
- Cuevas A.M., Clark J.M., Potter J.J. Increased TLR/MyD88 signaling in patients with obesity: Is there a link to COVID-19 disease severity? // Int. J. Obes. 2021. V. 45. № 5. P. 1152–1154. https://doi.org/10.1038/s41366-021-00768-8
- Da Silva S.J.R., do Nascimento J.C.F., Germano Mendes R.P. et al. Two years into the COVID-19 pandemic: Lessons learned // ACS Infect. Dis. 2022. V. 8. № 9. P. 1758–1814. https://doi.org/10.1021/acsinfecdis.2c00204
- Uludağ H., Parent K., Aliabadi H.M., Haddadi A. Prospects for RNAi therapy of COVID-19 // Front. Bioeng. Biotechnol. 2020. V. 8. https://doi.org/10.3389/fbioe.2020.00916
- Ferreira-Gomes M., Kruglov A., Durek P. et al. SARS-CoV-2 in severe COVID-19 induces a TGF-β-dominated chronic immune response that does not target itself // Nat. Commun. 2021. V. 12. № 1. P. 1961. https://doi.org/10.1038/s41467-021-22210-3
- Lechowicz K., Drożdżal S., Machaj F. et al. COVID-19: Тhe potential treatment of pulmonary fibrosis associated with SARS-CoV-2 infection // J. Clin. Med. 2020. V. 9. № 6. https://doi.org/10.3390/jcm9061917
- Mousavi S.R., Sajjadi M.S., Khosravian F. et al. Dysregulation of RNA interference components in COVID-19 patients // BMC Res. Notes. 2021. V. 14. № 1. P. 401. https://doi.org/10.1186/s13104-021-05816-0
Arquivos suplementares

