Changes in Ascorbate Content and Its Metabolism Gene Expression Pattern in Garlic Allium sativum L. Leaves in Response to Cold Stress
- Авторлар: Seredin T.M.1,2, Shchennikova A.V.1, Kochieva E.Z.1, Filyushin M.A.1
-
Мекемелер:
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
- Federal Scientific Vegetable Center
- Шығарылым: Том 61, № 2 (2025)
- Беттер: 59-66
- Бөлім: ГЕНЕТИКА РАСТЕНИЙ
- URL: https://bakhtiniada.ru/0016-6758/article/view/291701
- DOI: https://doi.org/10.31857/S0016675825020065
- EDN: https://elibrary.ru/uvkego
- ID: 291701
Дәйексөз келтіру
Аннотация
In two winter garlic (Allium sativum L.) cultivars, the expression of genes encoding key enzymes of the L-galactose pathway of ascorbate (AA) biosynthesis (VTC2, GPP, GalDH, GalLDH) and genes encoding AA recycling from oxidized forms (MDHAR1, MDHAR4, MDHAR5) was determined in the dynamics (0, 2, 4, 6, and 24 h) of short-term (24 h) cold (2°C) stress. It was found that in the leaf tissue of both cultivars (Sarmat and Dubkovsky), the level of VTC2 transcripts steadily increased during stress. The cultivars are also similar in the expression response to stress of the GalLDH and MDHAR1 genes, but differ in the reaction of the GPP, GalDH, MDHAR4 and MDHAR5. In the leaf tissue of both cultivars, the content of AA, carotenoids (total) and chlorophylls (a and b) was determined in the dynamics of cold stress. It was shown that the amount of all analyzed metabolites is initially higher in the cv. Sarmat than in the cv. Dubkovsky, and changes in the stress dynamics in a cultivar-specific manner. A positive correlation was shown between the amount of AA and the level of expression of the GalDH gene for both cultivars.
Негізгі сөздер
Авторлар туралы
T. Seredin
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences; Federal Scientific Vegetable Center
Email: michel7753@mail.ru
Ресей, Moscow, 119071; Moscow oblast, VNIISSOK village, 143080
A. Shchennikova
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: michel7753@mail.ru
Ресей, Moscow, 119071
E. Kochieva
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: michel7753@mail.ru
Ресей, Moscow, 119071
M. Filyushin
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: michel7753@mail.ru
Ресей, Moscow, 119071
Әдебиет тізімі
- Kidokoro S., Shinozaki K., Yamaguchi-Shinozaki K. Transcriptional regulatory network of plant cold-stress responses // Trends Plant Sci. 2022. V. 27(9). P. 922–935. https://doi.org/10.1016/j.tplants.2022.01.008
- Apel K., Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction // Annu. Rev. Plant Biol. 2004. V. 55. P. 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
- Smirnoff N. Ascorbic acid metabolism and functions: A comparison of plants and mammals // Free Radical Biol. and Med. 2018. V. 22. P. 116–129. https://doi.org/10.1016/j.freeradbiomed.2018.03.033
- Broad R.C., Bonneau J.P., Hellens R.P., Johnson A.A.T. Manipulation of ascorbate biosynthetic, recycling, and regulatory pathways for improved abiotic stress tolerance in plants // Int. J. Mol. Sci. 2020. V. 21. https://doi.org/10.3390/ijms21051790
- Ali B., Pantha S., Acharya R. et al. Enhanced ascorbate level improves multi-stress tolerance in a widely grown indica rice variety without compromising its agronomic characteristics // J. Plant Physiol. 2019. V. 240. https://doi.org/10.1016/j.jplph.2019.152998
- Dowdle J., Ishikawa T., Gatzek S. et al. Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling // Plant J. 2007. V. 52. P. 673–689. https://doi.org/10.1111/j.1365-313X.2007.03266.x
- Urzica E.I., Adler L.N., Page M.D. et al. Impact of oxidative stress on ascorbate biosynthesis in Chlamydomonas via regulation of the VTC2 gene encoding a GDP-L-galactose phosphorylase // J. Biol. Chem. 2012. V. 287. P. 14234–14245. https://doi.org/10.1074/jbc.M112.341982
- Dufoo-Hurtado M.D., Huerta-Ocampo J.Á., Barrera-Pacheco A. et al. Low temperature conditioning of garlic (Allium sativum L.) "seed" cloves induces alterations in sprouts proteome // Front. Plant Sci. 2015. V. 6. https://doi.org/10.3389/fpls.2015.00332
- Bian H., Zhou Q., Du Z. et al. Integrated transcriptomics and metabolomics analysis of the fructan metabolism response to low-temperature stress in garlic // Genes (Basel). 2023. V. 14(6). https://doi.org/10.3390/genes14061290
- Filyushin M.A., Anisimova O.K., Shchennikova A.V., Kochieva E.Z. DREB1 and DREB2 genes in garlic (Allium sativum L.): Genome-wide identification, characterization, and stress response // Plants (Basel). 2023. V. 12(13). https://doi.org/10.3390/plants12132538
- Anisimova O.K., Shchennikova A.V., Kochieva E.Z., Filyushin M.A. Identification of monodehydro-ascorbate reductase (MDHAR) genes in garlic (Allium sativum L.) and their role in the response to Fusarium proliferatum infection // Russian J. of Genetics. 2022. V. 58(7). P. 773–782. https://doi.org/10.1134/S1022795422070031
- Efremov G.I., Slugina M.A., Shchennikova A.V., Kochieva E.Z. Differential regulation of phytoene synthase PSY1 during fruit carotenogenesis in cultivated and wild tomato species (Solanum section Lycopersicon) // Plants. 2020. V. 9(9). https://doi.org/10.3390/plants9091169
- Sun X., Zhu S., Li N. et al. A Chromosome-level genome assembly of garlic (Allium sativum) provides insights into genome evolution and allicin biosynthesis // Mol. Plant. 2020. V. 13. P. 1328–1339. https://doi.org/10.1016/j.molp.2020.07.019
- Li S., Liu S., Zhang Q. et al. The interaction of ABA and ROS in plant growth and stress resistances // Front. Plant Sci. 2022. V. 13. https://doi.org/10.3389/fpls.2022.1050132
- Wu W., Wang L., Huang W. et al. A high-quality genome assembly reveals adaptations underlying glossy, wax-coated leaves in the heat-tolerant wild raspberry Rubus leucanthus // DNA Res. 2024. V. 31(4). https://doi.org/10.1093/dnares/dsae024
- García G., Clemente-Moreno M.J., Díaz-Vivancos P. et al. The apoplastic and symplastic antioxidant system in onion: Response to long-term salt stress // Antioxidants (Basel). 2020. V. 12. https://doi.org/10.3390/antiox9010067
- Feng H., Liu W., Zhang Q. et al. TaMDHAR4, a monodehydroascorbate reductase gene participates in the interactions between wheat and Puccinia striiformis f. sp. tritici // Plant Physiol. Biochem. 2014. V. 76. P. 7. https://doi.org/10.1016/j.plaphy.2013.12.015
- Zechmann B. Compartment-specific importance of ascorbate during environmental stress in plants // Antioxid. Redox. Signal. 2018. V. 29(15). P. 1488–1501. https://doi.org/10.1089/ars.2017.7232
- Badejo A.A., Fujikawa Y., Esaka M. Gene expression of ascorbic acid biosynthesis related enzymes of the Smirnof-Wheeler pathway in acerola (Malpighia glabra) // J. Plant Physiol. 2009. V. 166. P. 652–660. https://doi.org/10.1016/j.jplph.2008.09.004
- Anisimova O.K., Seredin T.M., Shchennikova A.V. et al. Estimation of the vitamin C content and GDP-L-galactose phosphorylase gene (VTC2) expression level in leek (Allium porrum L.) cultivars // Russ. J. Plant Physiology. 2021. V. 68. P. 85–93. https://doi.org/10.1134/S1021443720060023
Қосымша файлдар
