Dimensionality of exchange correlations of magnetization in high-entropy alloys FeCoNi(P)–W
- Авторлар: Denisova E.A.1, Chekanova L.A.1, Komogortsev S.V.1,2, Iskhakov R.S.1,3, Velikanov D.A.1, Kokh D.4, Nemtsev I.V.1,4,5
-
Мекемелер:
- Kirensky Institute of Physics, Federal Research Center “Krasnoyarsk Science Centre”, Siberian Branch, Russian Academy of Sciences
- Rechetnev Siberian State University of Science and Technology
- Samarkand State University named after Sharof Rashidov
- Federal Research Center “Krasnoyarsk Science Center,” Siberian Branch, Russian Academy of Sciences
- Siberian Federal University
- Шығарылым: Том 126, № 6 (2025)
- Беттер: 651-659
- Бөлім: ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА
- URL: https://bakhtiniada.ru/0015-3230/article/view/322660
- DOI: https://doi.org/10.31857/S0015323025060026
- ID: 322660
Дәйексөз келтіру
Аннотация
The high entropy (FeCoNiP)100-XWX coatings synthesized by chemical deposition have been investigated. Depending on the tungsten content, the coatings are a bcc solid solution or an amorphous alloy, or contain both phases simultaneously. From the analysis of the approach of magnetization to saturation by the correlation magnetometry method, it was found that the dimensionality of magnetization exchange correlations changes with a change in the tungsten concentration. At X > 10, three-dimensional exchange correlations of magnetization are realized, at 3 ≤Х ≤ 9 – two-dimensional exchange correlations, and at X < 3 – one-dimensional exchange correlations of magnetization. These observations can be attributed to the two-phase structure of the coating, along with the flattened shape of regions where the local easy magnetization axis remains uniform
Негізгі сөздер
Авторлар туралы
E. Denisova
Kirensky Institute of Physics, Federal Research Center “Krasnoyarsk Science Centre”, Siberian Branch, Russian Academy of Sciences
Email: len-den@iph.krasn.ru
Krasnoyarsk, 660036 Russia
L. Chekanova
Kirensky Institute of Physics, Federal Research Center “Krasnoyarsk Science Centre”, Siberian Branch, Russian Academy of Sciences
Email: len-den@iph.krasn.ru
Krasnoyarsk, 660036 Russia
S. Komogortsev
Kirensky Institute of Physics, Federal Research Center “Krasnoyarsk Science Centre”, Siberian Branch, Russian Academy of Sciences; Rechetnev Siberian State University of Science and Technology
Email: len-den@iph.krasn.ru
Krasnoyarsk, 660036 Russia; Krasnoyarsk, 660037 Russia
R. Iskhakov
Kirensky Institute of Physics, Federal Research Center “Krasnoyarsk Science Centre”, Siberian Branch, Russian Academy of Sciences; Samarkand State University named after Sharof Rashidov
Email: len-den@iph.krasn.ru
Krasnoyarsk, 660036 Russia; Samarkand, 140104 Uzbekistan
D. Velikanov
Kirensky Institute of Physics, Federal Research Center “Krasnoyarsk Science Centre”, Siberian Branch, Russian Academy of Sciences
Email: len-den@iph.krasn.ru
Krasnoyarsk, 660036 Russia
D. Kokh
Federal Research Center “Krasnoyarsk Science Center,” Siberian Branch, Russian Academy of Sciences
Email: len-den@iph.krasn.ru
Krasnoyarsk, 660036 Russia
I. Nemtsev
Kirensky Institute of Physics, Federal Research Center “Krasnoyarsk Science Centre”, Siberian Branch, Russian Academy of Sciences; Federal Research Center “Krasnoyarsk Science Center,” Siberian Branch, Russian Academy of Sciences; Siberian Federal University
Хат алмасуға жауапты Автор.
Email: len-den@iph.krasn.ru
Krasnoyarsk, 660036 Russia; Krasnoyarsk, 660036 Russia; Krasnoyarsk, 660041 Russia
Әдебиет тізімі
- Yeh J.W., Chen S.K., Lin S.J., Gan J.Y., Chin T.S., Shun T.T., Tsau C.H., Chang S.Y. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes // Adv. Eng. Mater. 2004. V. 6. Р. 299−303.
- Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys // Mater. Sci. Eng. A. 2004. V. 375–377. P. 213−218.
- Рогачев А.С. Структура, стабильность и свойства высокоэнтропийных сплавов // ФММ. 2020. Т. 121. № 8. С. 807−841.
- Pradeep K.G., Tasan C.C., Yao M.J., Deng Y., Springer H., Raabe D. Non-equiatomic high entropy alloys: Approach towards rapid alloys creening and property-oriented design // Mater. Sci. Eng. A. 2015. V. 648. P. 183−192.
- Guo S., Liu C.T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase // Progress Natural Sci.: Materials International. 2011. V. 21. P. 433.
- Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts // Acta Mater. 2017. V. 122. P. 448.
- Kitagawa J. Magnetic properties, electrical resistivity, and hardness of high-entropy alloys FeCoNiPd and FeCoNiPt // JMMM. 2022. V. 563. P. 170024.
- Zhang Y., Zuo T.T., Cheng Y.Q., Liaw P.K. High-entropy alloys with high saturation magnetization, electrical resistivity and malleability // Scientific Reports. 2013. V. 3. P. 1455.
- Wu Z.Y., Li B., Chen M.Y., Yang Y., Zheng R.Y., Yuan L., Li Z., Tan X.H., Xu H. Tailoring magnetic property and corrosion resistance of FeCoNiCuAl high-entropy alloy with Ce additive // J. Alloys Compd. 2022. V. 901. P. 163665.
- Lucas M.S., Mauger L., Muñoz J.A., Xiao Y., Sheets A.O., Semiatin S.L., Horwath J., Turgut Z. Magnetic and vibrational properties of high-entropy alloys // J. Appl. Phys. 2011. V. 109. Р. 07E307.
- Li W., Liu P., Liaw P.K. Microstructures and properties of high-entropy alloy films and coatings: a review // Mater. Research Letters. 2018. V. 6. Р. 199−229.
- Zuo T., Gao M.C., Ouyang L., Yang X., Cheng Y., Feng R., Chen S., Liaw P.K., Hawk J.A., Zhang Y. Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high entropy alloys by metaldoping // Acta Mater. 2017. V. 130. P. 10−18.
- Rao Z., Dutta B., Körmann F., Lu W., Zhou X., Liu C., Kwiatkowski da Silva A., Wiedwald U., Spasova M., Farle M. Beyond solid solution high-entropy alloys: tailoring magnetic properties via spinodal decomposition // Adv. Funct. Mater. 2021. V. 31. Iss. 7. P. 2007668.
- Hu Z.-Q. Chapter 20 – Amorphous Materials. Modern Inorganic Synthetic Chemistry. Elsevier., 2011. P. 455−478.
- Johnson W.L. Bulk amorphous metal—an emerging engineering material // JOM. 2002. V. 54. P. 40–43.
- Погребняк А.Д., Багдасарян А.А., Якущенко И.В., Береснев В.М. Структура и свойства высокоэнтропийных сплавов и нитридных покрытий на их основе // Успехи химии. 2014. Т. 83. № 11. С. 1027−1061.
- Ивченко М.И., Пушин В.Г., Уксусников А.Н., Вандерка Н. Особенности микроструктуры литых высоко энтропийных сплавов AlCrFeCoNiCu // ФММ. 2013. Т. 114. № 6. С. 561–568.
- Herzer G. Modern soft magnets: Amorphous and nanocrystalline materials // Acta Mater. 2013. V. 61. Iss. 3. P. 718−734.
- Suzuki K. Recent advances in nanocrystalline soft magnetic materials: A critical review for way forward // JMMM. 2024. V. 592. P. 171677.
- Iskhakov R.S., Komogortsev S.V. Magnetic microstructure of amorphous, nanocrystalline, and nanophase ferromagnets // Phys. Met. Metal. 2011. V. 112. P. 666−681.
- Harin E.V., Sheftel E.N., Tedzhetov V.A., Gridin D.M., Popov V.V., Kaminskaya T.P., Granovsky A.B. Comprehensive quantifying of the Fe-Ti-B film magnetic microstructure // Thin Solid Films. 2024. V. 807. P. 140544.
- Sheftel E.N., Harin E.V., Tedzhetov V.A., Usmanova G.Sh. FeZrN films with nanocomposite structure for soft magnetic applications // Phys. Met. Metal. 2023. V. 124. P. 1645–1653.
- Катаев В.А., Иванов О.А., Иванова Г.В., Летов М.В. Исследование формирования нанокристаллической структуры сплава методом корреляционной магнитометрии // ФММ. 1997. Т. 84. № 1. С. 55−61.
- Катаев В.А., Летов М.В., Иванов О.А. Исследование формирования нанокристаллической структуры сплава Finemet методом корреляционной магнитометрии // ФММ. 1999. Т. 87. № 1. С. 40−45.
- Iskhakov R.S., Kuzovnikova L.A., Komogortsev S.V., Denisova E.A., Balaev A.D., Bondarenko G.N. Magnetostructural investigation of ball-milled cobalt-copper alloy // Phys. Met. Metal. 2006. V. 102. No. S1. P. S64–S66.
- Чеканова Л.А., Денисова Е.А., Гончарова О.А., Комогорцев С.В., Исхаков Р.С. Анализ фазового состава порошков сплава Co–P на основе магнитометрических измерений // ФММ. 2013. Т. 114. № 2. С. 136−143.
- Tsepelev V.S., Starodubtsev Y.N. Nanocrystalline Soft Magnetic Iron-Based Materials from Liquid State to Ready Product // Nanomaterials (Basel). 2021. V. 11. P. 108.
- Денисова Е.А., Чеканова Л.А., Комогорцев C.В., Важенина И.Г., Исхаков Р.С., Кох Д., Великанов Д.А., Бондаренко Г.Н., Немцев И.В. Высокоэнтропийные сплавы FeCoNiP-Me (Me = Zn, Zr, W), изготовленные методом химического осаждения // ФТТ. 2024. Т. 66. № 7. С. 1026−1031.
- Djokic S.S., Antić Ž., Djokic N.S., Thundat T. Electroless deposition of Fe-Ni alloys from acidic and alkaline solutions using hypophosphite as a reducing agent // J. Serbian Chem. Society. 2019. V. 84. No. 11. Р. 1199−1208.
- Великанов Д.А. Автоматизированный вибрационный магнитометр с электромагнитом конструкции Пузея // Вестник СибГАУ. 2014. № 1. С. 147–154.
- Komogortsev S.V., Iskhakov R.S. Law of approach to magnetic saturation in nanocrystalline and amorphous ferromagnets with improved transition behavior between power-law regimes // JMMM. 2017. V. 440. P. 213−216.
- Грабчиков С.С. Аморфные электролитически осажденные металлические сплавы. Минск: Изд. центр. БГУ, 2006. 186 с.
- Keffer F. Handbuch der Physik. In: Der Phys / Ed. S. Flugge. Berlin: Springer-Verlag, 1966. p. 560.
- Tan L.P.,Chaudhary V., Tsakadze Z., Ramanujan R.V. Rapid multiple property determination from bulk materials libraries prepared from chemically synthesized powders // Sci. Rep. 2022. V. 12. P. 9504.
- Игнатченко В.А., Исхаков Р.С. Кривая намагничивания ферромагнетиков с анизотропными и низкомерными неоднородностями // ФММ. 1992. № 6. С. 75–86.
- Исхаков Р.С., Комогорцев С.В., Балаев А.Д., Чеканова Л.А. Размерность системы обменно-связанных зерен и магнитные свойства нанокристаллических и аморфных ферромагнетиков // Письма в ЖЭТФ. 2000. Т. 72. № 6. С. 440–444.
- Iskhakov R.S., Komogortsev S.V., Balaev A.D., Gavriliuk A.A. The manifestations of the two-dimensional magnetic correlations in the nanocrystalline ribbons Fe64Co21B15 // J. Magn. Magn. Mater. 2015. V. 374. P. 423–426.
- Исхаков Р.С., Комогорцев С.В., Балаев А.Д., Окотруб А.В., Кудашов А.Г., Кузнецов В.Л., Бутенко Ю.В. Нанонити Fe в углеродных нанотрубках как пример одномерной системы обменно-связанных ферромагнитных наночастиц // Письма в ЖЭТФ. 2003. Т. 78. № 4. С. 271–275.
- Karmakar S., Sharma Surinder M., Mukadam M.D., Yusuf S.M., Sood A.K. Magnetic behavior of iron-filled multiwalled carbon nanotubes // J. Appl. Phys. 2005. V. 97. P. 054306.
- Zheng M., Skomski R., Liu Y., Sellmyer D.J. Magnetic hysteresis of Ni nanowires // J. Phys.: Condens. Matter. 2000. V. 12. No. 30. P. L497−L503.
- Исхаков Р.С., Игнатченко В.А., Комогорцев С.В., Балаев А.Д. Изучение магнитных корреляций в наноструктурных ферромагнетиках методом корреляционной магнитометрии // Письма в ЖЭТФ. 2003. Т. 78. № 10. С. 1142–1146.
- Binns C., Maher M.J. Magnetic behaviour of thin films produced by depositing pre-formed Fe and Co nanoclusters // New J. Phys. 2002. V. 4. P. 85.
- Michels A., Viswanath R.N., Barker J.G., Birringer R., Weissmüller J. Range of magnetic correlations in nanocrystalline soft magnets // Phys. Rev. Lett. 2003. V. 91. P. 267204.
- Garoche P., Malozemoff A.P. Approach to magnetic saturation in sputtered amorphous films: Effects of structural defects, microscopic anisotropy, and surface roughness // Phys. Rev. B. 1984. V. 29. No. 1. P. 226–231.
- Denisova E., Kuzovnikova L., Iskhakov R., Kuzovnikov A., Lepeshev A., Nemtsev I., Saunin V., Telegin S., Bondarenko G., Mal‘tsev V. Bulk CoNiFe-SiB amorphous and nanostructured alloys produced by plasma spray deposition and dynamic compaction: formation of soft magnetic properties // Physics Procedia. 2015. V. 75. P. 1238–1243.
- Sheftel E.N., Harin E.V., Bobrovskii S.Yu., Rozanov K.N., Tedzhetov V.A., Bannykh I.O., Kiryukhantsev-Korneev Ph.V. FeTiB nanocrystalline films: Static and dynamic magnetic properties in accordance with phase composition and magnetic structure // J. Alloys Compd. 2023. V. 968. P. 171981.
Қосымша файлдар
