Model of Void Formation on Wedge Disclination
- Авторлар: Perevezentsev V.N.1, Kirikov S.V.1, Pupynin A.S.1
-
Мекемелер:
- Federal Research Center Institute of Applied Physics, Russian Academy of Sciences
- Шығарылым: Том 126, № 6 (2025)
- Беттер: 737-744
- Бөлім: ПРОЧНОСТЬ И ПЛАСТИЧНОСТЬ
- URL: https://bakhtiniada.ru/0015-3230/article/view/322670
- DOI: https://doi.org/10.31857/S0015323025060126
- ID: 322670
Дәйексөз келтіру
Аннотация
A model of voids formation during plastic deformation is proposed, based on the concept of crack formation in the field of elastic stresses of a negative disclination and its subsequent blunting due to accommodative plastic deformation. A detailed analysis of the main characteristics of a disclination crack is carried out. Analytical expressions are obtained for the stress intensity factors at its tips, the distribution of the Burgers vector density and the profile of its opening depending on the material parameters and disclination characteristics. The stability conditions of a symmetric microcrack with a disclination located in its center are investigated. For this configuration of defects, the dependence of the value of plastic crack opening on the disclination strength, the elastic field screening radius and the mechanical constants of the material is obtained.
Негізгі сөздер
Авторлар туралы
V. Perevezentsev
Federal Research Center Institute of Applied Physics, Russian Academy of Sciences
Email: v.n.perevezentsev@gmail.com
Nizhny Novgorod, 603024 Russia
S. Kirikov
Federal Research Center Institute of Applied Physics, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: ksv.kirikov@yandex.ru
Nizhny Novgorod, 603024 Russia
A. Pupynin
Federal Research Center Institute of Applied Physics, Russian Academy of Sciences
Email: pupynin.as@gmail.com
Nizhny Novgorod, 603024 Russia
Әдебиет тізімі
- Wilsdorf H.G.F. The ductile fracture of metals: a microstructural viewpoint // Mater. Sci. Eng. 1983. V. 59. P. 1–39.
- https://doi.org/10.1016/0025-5416(83)90085-X
- Wilsdorf H.G.F. The role of glide and twinning in the final separation of ruptured gold crystals // Acta Metall. 1982. V. 30. 1247–1258.
- https://doi.org/10.1016/0001-6160(82)90021-9
- Gardner R.N., Pollock T.C., Wilsdorf H.G.F. Crack initiation at dislocation cell boundaries in the ductile fracture of metals // Mater. Sci. Eng. 1977. V. 29. P. 169–174. https://doi.org/10.1016/0025-5416(77)90123-9
- Pollock T.C., Wilsdorf H.G.F. Beryllium fracture observed by in situ high voltage electron microscopy // Mater. Sci. Eng. 1983. V. 61. P. 7–15.
- https://doi.org/10.1016/0025- 5416(83)90120-9
- Gardner R.N., Wilsdorf H.G.F. Ductile fracture initiation in pure α-Fe: Part I. Macroscopic observations of the deformation history and failure of crystals // Metall. Trans. A. 1980. V. 11. P. 653–658.
- https://doi.org/10.1007/BF02670703
- Gardner R.N., Wilsdorf H.G.F. Ductile fracture initiation in pure α-Fe: Part II. Microscopic observations of an initiation mechanism // Metall. Trans. A. 1980. V. 11. P. 659–669.
- https://doi.org/10.1007/BF02670704
- Furukimi O., Kiattisaksri C., Takeda Y., Aramaki M., Oue S., Munetoh S., Tanaka M. Void nucleation behavior of singlecrystal high-purity iron specimens subjected to tensile deformation // Mater. Sci. Eng. 2017. V. 701. P. 221–225.
- https://doi.org/10.1016/j.msea.2017.06.084
- Lim H., Noell P.J., Carroll J.D. Crystallographic orientation dependent fracture behavior in tantalum single crystals // Scr. Mater. 2021. V. 191. P. 76–80.
- https://doi.org/10.1016/j.scriptamat.2020.09.017.
- Noell P.J., Carroll J.D., Hattar K., Clark B., Boyce B. Do voids nucleate at grain boundaries during ductile rupture? // Acta Mater. 2017. V. 137. P. 103–114.
- https://doi.org/10.1016/j.actamat.2017.07.004
- Noell P.J., Sills R.B., Boyce B.L. Suppression of Void Nucleation in High-Purity Aluminum via Dynamic Recrystallization // Metall. Mater. Trans. A. 2020. V. 51. P. 154–166.
- https://doi.org/10.1007/s11661-019-05457-w
- Рыбин В.В. Большие пластические деформации и разрушение металлов. Москва: Металлургия, 1986. 224 с.
- Zisman A.A., Rybin V.V. Basic configurations of interfacial and junction defects induced in a polycrystal by deformation of grains // Acta Mater. 1996. V. 44. P. 403–407.
- https://doi.org/10.1016/1359- 6454(95)00155-8
- Romanov A.E., Kolesnikova A.L. Application of disclination concept to solid structures // Progr. Mater. Sci. 2009. V. 54. P. 740–769.
- https://doi.org/10.1016/j.pmatsci.2009.03.002
- Liu Q., Hansen N. Micro structural study of deformation in grain boundary region during plastic deformation of polycrystalline aluminium // Mater. Sci. Eng. A. 1997. V. 234. P. 672–675.
- https://doi.org/10.1016/S0921- 5093(97)00300-6
- Рыбин В.В., Перевезенцев В.Н., Кириков С.В. Формирование оборванных дислокационных границ деформационного происхождения на фасетированных границах зерен // ФММ. 2018. Т. 119. С. 444–452 (2018).
- https://doi.org/10.7868/S0015323018050029
- Noell P.J., Sabisch J.E., Medlin D.L., Boyce B.L. Nanoscale conditions for ductile void nucleation in copper: Vacancy condensation and the growthlimited microstructural state // Acta Mater. 2020. V. 184. P. 211–224. https://doi.org/10.1016/j.actamat.2019.11.022
- Михайлин А.И., Романов А.Е. Аморфизация ядра дисклинации // ФТТ. 1986. Т. 28. №. 2. С. 601–603.
- Романов А.Е., Самсонидзе Г.Г. Диффузия в упругом поле клиновой дисклинации // ПЖТФ. 1988. Т. 14. № 14. С. 1339–1342.
- Marian J., Knap J., Ortiz M. Nanovoid cavitation by dislocation emission in aluminum // Phys. Rev. Lett. 2004. V. 93. P. 165503.
- https://doi.org/10.1103/PhysRevLett.93.165503
- Lubarda V.A., Schneider M.S., Calantar D.H., Remington B.A., Meyers M.A. Void growth by dislocation emission // Acta Mater. 2004. V. 52. P. 1397–1408. https://doi.org/10.1016/j.actamat.2003.11.022
- Traiviratana S., Bringa E.M., Benson D.J., Meyers M.A. Void growth in metals: Atomistic calculations // Acta Mater. 2008. V. 56. P. 3874–3886.
- https://doi.org/10.1016/j.actamat.2008.03.047
- Bringa E.M., Traiviratana S., Meyers M.A. Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects // Acta Mater. 2010. V. 58. P. 4458–4477.
- https://doi.org/10.1016/j.actamat.2010.04.043
- Sills R.B., Boyce B.L. Void growth by dislocation adsorption // Mater. Res. Lett. 2020. V. 8. P. 103–109. https://doi.org/10.1080/21663831.2019.1702114
- Bulatov V.V., Wolfer W.G., Kumar M. Shear impossibility: Comments on ‘Void growth by dislocation emission’ and ‘Void growth in metals: Atomistic calculations’ // Scr. Mater. 2010. V. 63. P. 144–147.
- https://doi.org/10.1016/j.scriptamat.2010.03.001
- Nguyen L.D., Warner D.H. Improbability of void growth in aluminum via dislocation nucleation under typical laboratory conditions // Phys. Rev. Lett. 2012. V. 108. P. 035501.
- https://doi.org/10.1103/PhysRevLett.108.035501
- Gutkin M.Y., Ovid’ko I.A. Disclinations, amorphization and microcrack generation at grain boundary junctions in polycrystalline solids // Phil. Mag. A. 1994. V. 70. P. 561–575.
- https://doi.org/10.1080/01418619408242248
- Zhou K., Nazarov A.A., Wu M.S. Continuum and atomistic studies of a disclinated crack in a bicrystalline nanowire // Phys. Rev. B. 2006. V. 73. P. 045410. https://doi.org/10.1103/PhysRevB.73.045410
- Wu M.S., Zhou K., Nazarov A.A. Stability and relaxation mechanisms of a wedge disclination in an HCP bicrystalline nanowire // Modell. Sim. Mater. Sci. Eng. 2006. V. 14. P. 647.
- https://doi.org/10.1088/09650393/14/4/008
- Wu M.S., Zhou K., Nazarov A.A. Crack nucleation at disclinated triple junctions // Phys. Rev. B. 2007. V. 76. P. 134105.
- https://doi.org/10.1103/PhysRevB.76.134105
- Wu M.S., Zhou K., Nazarov A.A., Lim B.K. Atomistic simulations of disclinated cracks at triple junctions in nanocrystalline metals // Вопр. материловед. 2007. № 4(52). С. 240–245.
- Nazarov A.A., Wu M.S., Zhou H. Computer simulation of crack formation in a nickel bicrystal nanowire containing a wedge disclination // Phys. Met. Metall. 2007. V. 104. P. 274–280.
- https://doi.org/10.1134/S0031918X07090098
- Ovid’ko I.A., Sheinerman A.G. Nanocrack generation at dislocation-disclination configurations in nanocrystalline metals and ceramics // Phys. Rev. B. 2008. V. 77. P. 054109.
- https://doi.org/10.1103/PhysRevB.77.054109
- Kirikov S.V., Perevezentsev V.N., Pupynin A.S. On Crack Initiation Near Stress Sources with Weak Divergences // Phys. Metals and Metall. 2023. V. 124. P. 831–838. https://doi.org/10.1134/S0031918X23601257
- Kirikov S.V., Perevezentsev V.N. Analysis of the conditions for the existence of stable microcracks in an elastic stress field from a rotational-shear mesodefect // Lett. Mater. 2021. V. 11(1). P. 50–54.
- https://doi.org/10.22226/2410-3535-2021-1-50-54
- Kirikov S.V., Perevezentsev V.N., Pupynin A.S. Features of crack propagation in the elastic field of wedge disclination combined with edge superdislocation // Lett. Mater. 2024. V. 14(4). P. 394–398.
- https://doi.org/10.48612/letters/2024-4-394-398
- Wu M.S., Zhou H. Analysis of a crack in a disclinated cylinder // Int. J. Fract. 1996. V. 82. P. 381–399. https://doi.org/10.1007/BF00013240
- Luo J., Zhou K., Xiao Z.M. Stress investigation on a Griffith crack initiated from an eccentric disclination in a cylinder // Acta Mech. 2009. V. 202. P. 65–77. https://doi.org/10.1007/s00707-008-0010-1
- Luo J., Xiao Z.M., Zhou K. Stress analysis on a Zener crack nucleation from an eccentric wedge disclination in a cylinder // Int. J. Eng. Sci. 2009. V. 47. P. 811–820. https://doi.org/10.1016/j.ijengsci.2009.05.006
- Zhao Y., Fang Q., Liu Y., Jiang C. Shielding effects of disclinations on the elliptical blunt crack // Int. J. Eng. Sci. 2013. V. 70. P. 91–101.
- https://doi.org/10.1016/j.ijengsci.2013.05.002
- Wu M.S. Characteristics of a disclinated Zener crack with cohesive end zones // Int. J. Eng. Sci. 2001. V. 39. P. 1459–1485.
- https://doi.org/10.1016/S0020-7225(00)00086-0
- Wu M.S. Characteristics of a Zener crack wedged open by a disclination dipole // Solid State Phen. 2002. V. 87. P. 277–300.
- https://doi.org/10.4028/www.scientific.net/SSP.87.277
- Paris P.C., Sih G.C. Stress Analysis of Cracks / in Fracture Toughness Testing and its Applications. ASTM STP. 1965. V. 381. P. 30–81.
- Лихачев В.А., Хайров Р.Ю. Введение в теорию дисклинаций. Ленинград: Изд-во Ленингр. ун-та, 1975. 183 с.
- Weertman J. Dislocation based fracture mechanics. World Scientific, 1996. 524 p.
- Калиткин Н.Н., Альшин А.Б., Альшина Е.А., Рогов Б.В. Вычисления на квазиравномерных сетках. Москва: Физматлит, 2005. 224 с.
- Anderson T.L. Fracture Mechanics: Fundamentals and Applications. CRC Press, 2005.
- https://doi.org/10.1201/9781420058215
Қосымша файлдар
