Methods for Constructing Predictor Ensembles Based on Convex Combinations

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Сonstructing convex combinations of predictors is an effective method for building ensembles in solving regression problems. Herewith it seems possible to improve the final quality of the algorithm if an initial set of predictors is constructed in a special way. In this paper, we study two techniques that allow us to achieve such an improvement: bagging in combination with the random subspace method, and optimization of the divergence of predictors. The effectiveness of resulting methods is verified in applied problems.

Авторлар туралы

I. Borisov

Lomonosov MSU

Email: s02210331@gse.cs.msu.ru
Moscow, Russia

A. Dokukin

FRC CSC RAS

Email: dalex@ccas.ru
Moscow, Russia

O. Senko

FRC CSC RAS

Хат алмасуға жауапты Автор.
Email: senkoov@mail.ru
Moscow, Russia

Әдебиет тізімі

  1. Zhou Z.H. Ensemble Methods: Foundations and Algorithms. Chapman and Hall/CRC. N. Y., 2012.
  2. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning Data Mining, Inference, and Prediction. Springer Series in Statistics. N. Y.: Springer, 2009.
  3. Сенько О.В., Докукин А.А. Оптимальные выпуклые корректирующие процедуры в задачах высокой размерности // ЖВМ и МФ. 2011. Т. 51. № 9. С. 1751–1760.
  4. Сенько О.В., Докукин А.А. Регрессионная модель, основанная на выпуклых комбинациях, максимально коррелирующих с откликом // ЖВМ и МФ. 2015. Т. 55. № 3. С. 530–544.
  5. Senko O.V., Dokukin A.A., Kiselyova N.N., Dudarev V.A., Kuznetsova Yu.O. New Two-Level Ensemble Method and Its Application to Chemical Compounds Properties Prediction // Lobachevskii Journal of Mathematics. 2023. V. 44. № 1. P. 188–197.
  6. Докукин А.А., Сенько О.В. Новый двухуровневый метод машинного обучения для оценивания вещественных характеристик объектов // Изв. РАН ТиСУ. 2023. № 4. C. 17–24. https://doi.org/10.31857/S0002338823040029
  7. Zhuravlev Yu.I., Senko O.V., Dokukin A.A., Kiselyova N.N., Saenko I.A. Two-Level Regression Method Using Ensembles of Trees with Optimal Divergence // Doklady Mathematics. 2021. V. 104. № 1. P. 212–214.
  8. Kiselyova N.N., Stolyarenko A.V., Ryazanov V.V., Sen’ko O.V., Dokukin A.A. Application of Machine Training Methods to Design of New Inorganic Compounds // Diagnostic Test Approaches to Machine Learning and Commonsense Reasoning Systems / Eds X.A. Naidenova, D.I. Ignatov. Hershey: IGI Global, 2013. P. 197–220.
  9. Breiman L. Random forests // Machine Learning. 2001. V. 45. № 1. P. 5–32.
  10. Ho T.K. The Random Subspace Method for Constructing Decision Forests // IEEE Transactions on Pattern Analysis and Machine Intelligence. 1998. V. 20. № 8. P. 832–844.
  11. Wolpert D.H. Stacked Generalization // Neural Networks. 1992. V. 5. № 2. P. 241–259.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».