Methods for Constructing Predictor Ensembles Based on Convex Combinations
- Авторлар: Borisov I.M.1, Dokukin A.A.2, Senko O.V.2
-
Мекемелер:
- Lomonosov MSU
- FRC CSC RAS
- Шығарылым: № 4 (2025)
- Беттер: 94-102
- Бөлім: COMPUTER METHODS
- URL: https://bakhtiniada.ru/0002-3388/article/view/308360
- DOI: https://doi.org/10.31857/S0002338825040064
- EDN: https://elibrary.ru/botsei
- ID: 308360
Дәйексөз келтіру
Аннотация
Сonstructing convex combinations of predictors is an effective method for building ensembles in solving regression problems. Herewith it seems possible to improve the final quality of the algorithm if an initial set of predictors is constructed in a special way. In this paper, we study two techniques that allow us to achieve such an improvement: bagging in combination with the random subspace method, and optimization of the divergence of predictors. The effectiveness of resulting methods is verified in applied problems.
Авторлар туралы
I. Borisov
Lomonosov MSU
Email: s02210331@gse.cs.msu.ru
Moscow, Russia
A. Dokukin
FRC CSC RAS
Email: dalex@ccas.ru
Moscow, Russia
O. Senko
FRC CSC RAS
Хат алмасуға жауапты Автор.
Email: senkoov@mail.ru
Moscow, Russia
Әдебиет тізімі
- Zhou Z.H. Ensemble Methods: Foundations and Algorithms. Chapman and Hall/CRC. N. Y., 2012.
- Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning Data Mining, Inference, and Prediction. Springer Series in Statistics. N. Y.: Springer, 2009.
- Сенько О.В., Докукин А.А. Оптимальные выпуклые корректирующие процедуры в задачах высокой размерности // ЖВМ и МФ. 2011. Т. 51. № 9. С. 1751–1760.
- Сенько О.В., Докукин А.А. Регрессионная модель, основанная на выпуклых комбинациях, максимально коррелирующих с откликом // ЖВМ и МФ. 2015. Т. 55. № 3. С. 530–544.
- Senko O.V., Dokukin A.A., Kiselyova N.N., Dudarev V.A., Kuznetsova Yu.O. New Two-Level Ensemble Method and Its Application to Chemical Compounds Properties Prediction // Lobachevskii Journal of Mathematics. 2023. V. 44. № 1. P. 188–197.
- Докукин А.А., Сенько О.В. Новый двухуровневый метод машинного обучения для оценивания вещественных характеристик объектов // Изв. РАН ТиСУ. 2023. № 4. C. 17–24. https://doi.org/10.31857/S0002338823040029
- Zhuravlev Yu.I., Senko O.V., Dokukin A.A., Kiselyova N.N., Saenko I.A. Two-Level Regression Method Using Ensembles of Trees with Optimal Divergence // Doklady Mathematics. 2021. V. 104. № 1. P. 212–214.
- Kiselyova N.N., Stolyarenko A.V., Ryazanov V.V., Sen’ko O.V., Dokukin A.A. Application of Machine Training Methods to Design of New Inorganic Compounds // Diagnostic Test Approaches to Machine Learning and Commonsense Reasoning Systems / Eds X.A. Naidenova, D.I. Ignatov. Hershey: IGI Global, 2013. P. 197–220.
- Breiman L. Random forests // Machine Learning. 2001. V. 45. № 1. P. 5–32.
- Ho T.K. The Random Subspace Method for Constructing Decision Forests // IEEE Transactions on Pattern Analysis and Machine Intelligence. 1998. V. 20. № 8. P. 832–844.
- Wolpert D.H. Stacked Generalization // Neural Networks. 1992. V. 5. № 2. P. 241–259.
Қосымша файлдар
