肺部CT图像重建参数对病理灶体积误差的影响
- 作者: Alderov Z.A.1, Rozengauz E.V.2,3, Nesterov D.2,3,4
-
隶属关系:
- Mytishchi City Clinical Hospital
- Central Research Institute of Roentgenology and Radiology named after Academician A.M. Granov
- North-Western State Medical University named after I.I. Mechnikov
- National Medical Research Center of Oncology named after N.N. Petrov
- 期: 卷 12, 编号 3 (2020)
- 页面: 73-77
- 栏目: Original research
- URL: https://bakhtiniada.ru/vszgmu/article/view/44920
- DOI: https://doi.org/10.17816/mechnikov44920
- ID: 44920
如何引用文章
详细
研究现实性。评估肿瘤过程的一个关键方法是分析病源规模的动态。在明显高灵敏度的情
况下,体积计误差可达60%,大大限制了该方法的使用。
目的是评估图像重建参数在多大程度上影响到固体温床体积测量误差。
材料与方法。对32名肺癌患者进行了检查,发现326个病灶。对于每一个炉体和一个可变的重建参数,即剪切厚度和岩心厚度,计算了测量误差。使用回归分析评估因素对测量误差的影响程度。
结果。随机和绝对测量误差受切片厚度,重建内核,焦点的位置及其直径的影响。使用FC07内核并增加切片厚度会增加系统误差。两个组成部分的错误随着焦点直径的增加而减小。肺内病灶的特点是所有重建参数的测量误差最小。
为了预测随着切片厚度的变化而计算各种直径的病灶体积时的系统误差,创建了一个数学模型。
该模型的标准误差为6.7%。模型残差的标准偏差(随机误差),焦距,切片厚度和重建内核之间发现了一种关系。
结论。系统误差取决于焦点的直径,切片厚度和重建内核。它可以通过拟议的6%误差模型进行评估。随机误差主要取决于焦点的直径。
作者简介
Zaur Alderov
Mytishchi City Clinical Hospital
编辑信件的主要联系方式.
Email: zaurzz@rambler.ru
ORCID iD: 0000-0002-6255-1583
俄罗斯联邦, Moscow region, Mytishchi
Evgeny Rozengauz
Central Research Institute of Roentgenology and Radiology named after Academician A.M. Granov; North-Western State Medical University named after I.I. Mechnikov
Email: rozengaouz@yandex.ru
俄罗斯联邦, Saint Petersburg
Denis Nesterov
Central Research Institute of Roentgenology and Radiology named after Academician A.M. Granov; North-Western State Medical University named after I.I. Mechnikov; National Medical Research Center of Oncology named after N.N. Petrov
Email: cireto@gmail.com
俄罗斯联邦, Saint Petersburg
参考
- Choi H, Charnsangavej C, de Castro Faria S, et al. CT evaluation of the response of gastrointestinal stromal tumors after imatinib mesylate treatment: a quantitative analysis correlated with FDG PET findings. AJR Am J Roentgenol. 2004;183(6):1619-1628. https://doi.org/10.2214/ajr.183.6.01831619.
- Devaraj A, van Ginneken B, Nair A, Baldwin D. Use of volumetry for lung nodule management: Theory and practice. Radiology. 2017;284(3):630-644. https://doi.org/ 10.1148/radiol.2017151022.
- Li Q, Gavrielides MA, Sahiner B, et al. Statistical analysis of lung nodule volume measurements with CT in a large-scale phantom study. Med Phys. 2015;42(7):3932-3947. https://doi.org/10.1118/1.4921734.
- Liang M, Yip R, Tang W, et al. Variation in screening CT-detected nodule volumetry as a function of size. AJR Am J Roentgenol. 2017;209(2):304-308. https://doi.org/ 10.2214/AJR.16.17159.
- Petrou M, Quint LE, Nan B, Baker LH. Pulmonary nodule volumetric measurement variability as a function of CT slice thickness and nodule morphology. AJR Am J Roentgenol. 2007;188(2):306-312. https://doi.org/10.2214/AJR. 05.1063.
- Schwartz LH, Litière S, de Vries E, et al. RECIST 1.1 and clarification: From the RECIST committee. Eur J Cancer. 2016;62:132-137. https://doi.org/10.1016/j.ejca. 2016.03.081.
- Wormanns D, Kohl G, Klotz E, et al. Volumetric measurements of pulmonary nodules at multi-row detector CT: In vivo reproducibility. Eur Radiol. 2004;14(1):86-92. https://doi.org/10.1007/s00330-003- 2132-0.
- Gietema HA, Wang Y, Xu D, et al. Pulmonary nodules detected at lung cancer screening: Interobserver variability of semiautomated volume measurements. Radiology. 2006;241(1):251-257. https://doi.org/10.1148/radiol.2411050860.
- Gietema HA, Schaefer-Prokop CM, Mali WP, et al. Pulmonary nodules: interscan variability of semiautomated volume measurements with multisection CT — influence of inspiration level, nodule size, and segmentation performance. Radiology. 2007;245(3):888-894. https://doi.org/ 10.1148/radiol.2452061054.
补充文件
