Microbial-Derived Uremic Toxins as a Factor of Vascular Remodeling in Patients Receiving Hemodialysis Treatment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: In the population of patients with chronic kidney disease, higher levels of microbial-derived uremic toxins, regardless of the presence of traditional risk factors, predict an increased risk of adverse outcomes due to various cardiovascular complications. Meanwhile, the mechanisms of this association remain largely unexplored.

AIM: To study associations between concentrations of microbial-derived uremic toxins indoxyl sulfate, p-cresyl sulfate and trimethylamine-N-oxide and vascular remodeling in patients receiving hemodialysis treatment.

METHODS: This study included 80 hemodialysis patients and 80 individuals with normal kidney function. The groups were comparable by gender, age, body mass index and smoking intake status. The presence and severity of vascular remodeling were assessed using cardio-ankle vascular index, carotid intima-media thickness, abdominal aortic calcification scores and brachial artery endothelium-dependent vasodilation (flow-mediated dilation). The concentrations of indoxyl sulfate and p-cresyl sulfate in blood serum were determined by ELISA. The serum levels of trimethylamine-N-oxide were assessed by liquid chromatography/mass spectrometry.

RESULTS: Compared with healthy controls, dialysis patients showed significantly higher cardio-ankle vascular index (9.5 ± 1.5 vs. 7.8 ± 1.2, p < 0.001) and carotid intima-media thickness (1.04 ± 0.2 vs. 0.95 ± 0.15 mm, p = 0.001), as well as lower flow-mediated dilation (3.9 ± 1.2 vs. 7.5 ± 0.8%, p < 0.001). The median abdominal aortic calcification in this group was 4.5 (0–9.0). In the multivariate regression analysis adjusted for other dependent factors, indoxyl sulfate was found to be an independent determinant of cardio-ankle vascular index (β = 0.266; p = 0.002) and carotid intima-media thickness (β = 0.372; p = 0.001). Similarly, p-cresyl sulfate was a predictor of cardio-ankle vascular index (β = 0.143; p = 0.048) and abdominal aortic calcification (β = 0.21; p = 0.032), while trimethylamine-N-oxide was independently associated with cardio-ankle vascular index (β = 0.223; p = 0.004), carotid intima-media thickness (β = 0.208; p = 0.024) and flow-mediated dilation (β = −0.262; p = 0.004).

CONCLUSION: The relationship between an increased serum microbial-derived uremic toxins and surrogate markers of cardiovascular diseases (cardio-ankle vascular index, carotid intima-media thickness, abdominal aortic calcification and flow-mediated dilation) found in this study may indicate a significant role of indoxyl sulfate, p-cresyl sulfate and trimethylamine-N-oxide in vascular remodeling in individuals receiving hemodialysis treatment.

About the authors

Mikhail O. Pyatchenkov

Kirov Military Medical Academy

Author for correspondence.
Email: pyatchenkovMD@yandex.ru
ORCID iD: 0000-0002-5893-3191
SPIN-code: 5572-8891

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Evgeniy V. Shсherbakov

Kirov Military Medical Academy

Email: evgenvmeda@mail.ru
ORCID iD: 0000-0002-3045-1721
SPIN-code: 6337-6039

MD

Russian Federation, Saint Petersburg

Aleksandra E. Trandina

Kirov Military Medical Academy

Email: sasha-trandina@rambler.ru
ORCID iD: 0000-0003-1875-1059
SPIN-code: 6089-3495
Russian Federation, Saint Petersburg

Klim A. Leonov

Exacte Labs

Email: leonov_k90@mail.ru
ORCID iD: 0000-0003-4268-1724

Cand. Sci. (Chemistry)

Russian Federation, Moscow

Pavel D. Sobolev

Exacte Labs

Email: aiyyna.nikiforova@exactelabs.com
ORCID iD: 0000-0003-3634-596X

MD

Russian Federation, Moscow

Aiyyna G. Nikiforova

Exacte Labs

Email: aiyyna.nikiforova@exactelabs.com
ORCID iD: 0000-0002-5719-0787

MD

Russian Federation, Moscow

Yuri E. Rubtsov

Kirov Military Medical Academy

Email: rubtsovyuri@yandex.ru
ORCID iD: 0000-0002-1865-4251
SPIN-code: 1096-5120

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

O. A. Nagibovich

Kirov Military Medical Academy

Email: olegnagibovich@mail.ru
ORCID iD: 0000-0002-1520-0860
SPIN-code: 8694-2012

MD, Dr. Sci. (Medicine), Assistant Professor

Russian Federation, St. Petersburg

References

  1. Hill NR, Fatoba ST, Oke JL, et al. Global prevalence of chronic kidney disease – a systematic review and meta-analysis. PLoS One. 2016;11(7):e0158765. doi: 10.1371/journal.pone.0158765
  2. El Chamieh C, Liabeuf S, Massy Z. Uremic toxins and cardiovascular risk in chronic kidney disease: what have we learned recently beyond the past findings? Toxins (Basel). 2022;14(4):280. doi: 10.3390/toxins14040280
  3. Vlagopoulos PT, Sarnak MJ. Traditional and nontraditional cardiovascular risk factors in chronic kidney disease. Med Clin North Am. 2005;89(3):587–611. doi: 10.1016/j.mcna.2004.11.003
  4. Virani SS, Alonso A, Benjamin EJ, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139–e596. doi: 10.1161/CIR.0000000000000757
  5. Sarnak MJ, Levey AS, Schoolwerth AC, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Hypertension. 2003;42(5):1050–1065. doi: 10.1161/01.HYP.0000102971.85504.7c
  6. Duranton F, Cohen G, De Smet R, et al. Normal and pathologic concentrations of uremic toxins [published correction appears in J Am Soc Nephrol. 2013;24(12):2127–2129. J Am Soc Nephrol. 2012;23(7):1258–1270. doi: 10.1681/ASN.2011121175
  7. Rapp N, Evenepoel P, Stenvinkel P, Schurgers L. Uremic toxins and vascular calcification-missing the forest for all the trees. Toxins (Basel). 2020;12(10):624. doi: 10.3390/toxins12100624
  8. Lukichev BG, Rumyantsev AS, Akimenko V. Colonic microbiota and chronic kidney disease. Message one. Nephrology (Saint-Petersburg). 2018;22(4):57–73. EDN: XWBYWL (In Russ.). doi: 10.24884/1561-6274-2018-22-4-57-73
  9. Lukichev BG, Karunnaya AV, Rumyantsev AS. Indoxyl sulphate at chronic kidney disease. Nephrology (Saint-Petersburg). 2014;18(1):25–32. EDN: RXQXLT doi: 10.24884/1561-6274-2014-18-1-20-24
  10. Pyatchenkov MO, Vlasov AA, Sherbakov EV, Salikova SP. Microbial-derived uremic toxins: role in the pathogenesis of comorbidities in patients with chronic kidney disease. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2023;33(3):7–15. EDN: DZGPXN doi: 10.22416/1382-4376-2023-33-3-7-15
  11. Fan PC, Chang JC, Lin CN, et al. Serum indoxyl sulfate predicts adverse cardiovascular events in patients with chronic kidney disease. J Formos Med Assoc. 2019;118(7):1099–1106. doi: 10.1016/j.jfma.2019.03.005
  12. Wu IW, Hsu KH, Hsu HJ, et al. Serum free p-cresyl sulfate levels predict cardiovascular and all-cause mortality in elderly hemodialysis patients – a prospective cohort study. Nephrol Dial Transplant. 2012;27(3):1169–1175. doi: 10.1093/ndt/gfr453
  13. Shafi T, Powe NR, Meyer TW, et al. Trimethylamine n-oxide and cardiovascular events in hemodialysis patients. J Am Soc Nephrol. 2017;28(1):321–331. doi: 10.1681/ASN.2016030374
  14. Guo J, Lu L, Hua Y, et al. Vasculopathy in the setting of cardiorenal syndrome: roles of protein-bound uremic toxins. Am J Physiol Heart Circ Physiol. 2017;313(1):H1–H13. doi: 10.1152/ajpheart.00787.2016
  15. Shafi T, Meyer TW, Hostetter TH, et al. Free levels of selected organic solutes and cardiovascular morbidity and mortality in hemodialysis patients: results from the Retained Organic Solutes and Clinical Outcomes (ROSCO) investigators. PLoS One. 2015;10(5):e0126048. doi: 10.1371/journal.pone.0126048.
  16. Liabeuf S, Barreto DV, Barreto FC, et al. Free p-cresylsulphate is a predictor of mortality in patients at different stages of chronic kidney disease. Nephrol Dial Transplant. 2010;25(4):1183–1191. doi: 10.1093/ndt/gfp592
  17. Kim RB, Morse BL, Djurdjev O, et al. Advanced chronic kidney disease populations have elevated trimethylamine N-oxide levels associated with increased cardiovascular events. Kidney Int. 2016;89(5):1144–1152. doi: 10.1016/j.kint.2016.01.014
  18. Chen Y, Zelnick LR, Huber MP, et al. Association between kidney clearance of secretory solutes and cardiovascular events: The Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis. 2021;78(2):226–235.e1. doi: 10.1053/j.ajkd.2020.12.005
  19. Kaysen GA, Johansen KL, Chertow GM, et al. Associations of trimethylamine n-oxide with nutritional and inflammatory biomarkers and cardiovascular outcomes in patients new to dialysis. J Ren Nutr. 2015;25(4):351–356. doi: 10.1053/j.jrn.2015.02.006
  20. Stubbs JR, Stedman MR, Liu S, et al. Trimethylamine n-oxide and cardiovascular outcomes in patients with ESKD receiving maintenance hemodialysis. Clin J Am Soc Nephrol. 2019;14(2):261–267. doi: 10.2215/CJN.06190518
  21. Shafi T, Sirich TL, Meyer TW, et al. Results of the HEMO Study suggest that p-cresol sulfate and indoxyl sulfate are not associated with cardiovascular outcomes. Kidney Int. 2017;92(6):1484–1492. doi: 10.1016/j.kint.2017.05.012
  22. Pyatchenkov MO, Sherbakov EV, Trandina AE, et al. Changes in the composition of the gut microbiota and content of microbial-derived uremic toxins in patients undergoing hemodialysis. Bulletin of the Russian Military Medical Academy. 2024;26(1):51–60. EDN: HYDCYI doi: 10.17816/brmma624008
  23. Ichihara A, Yamashita N, Takemitsu T, et al. Cardio-ankle vascular index and ankle pulse wave velocity as a marker of arterial fibrosis in kidney failure treated by hemodialysis. Am J Kidney Dis. 2008;52(5):947–955. doi: 10.1053/j.ajkd.2008.06.007
  24. Kauppila LI, Polak JF, Cupples LA, et al. New indices to classify location, severity and progression of calcific lesions in the abdominal aorta: a 25-year follow-up study. Atherosclerosis. 1997;132(2):245–250. doi: 10.1016/s0021-9150(97)00106-8
  25. Corretti MC, Anderson TJ, Benjamin EJ, et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 2002;39(2):257–265. doi: 10.1016/s0735-1097(01)01746-6 Erratum in: J Am Coll Cardiol. 2002;39(6):1082.
  26. Bai J, Zhang A, Zhang Y, et al. Abdominal aortic calcification score can predict all-cause and cardiovascular mortality in maintenance hemodialysis patients. Ren Fail. 2023;45(1):2158869. doi: 10.1080/0886022X.2022.2158869
  27. Lindner A, Charra B, Sherrard DJ, Scribner BH. Accelerated atherosclerosis in prolonged maintenance hemodialysis. N Engl J Med. 1974;290(13):697–701. doi: 10.1056/NEJM197403282901301
  28. Valdivielso JM, Rodríguez-Puyol D, Pascual J, et al. Atherosclerosis in chronic kidney disease: more, less, or just different? Arterioscler Thromb Vasc Biol. 2019;39(10):1938–1966. doi: 10.1161/ATVBAHA.119.312705
  29. Skorodumova EA, Aleksandrov MV, Obresan AG, et al. Clinical and elecrocardiographic characteristics of myocardial infarction associated with chronic kidney disease. Herald of north-western state medical university named after I.I. Mechnikov. 2016;8(1):61–66. EDN: WCIDXB
  30. Ohtake T, Kobayashi S, Moriya H, et al. High prevalence of occult coronary artery stenosis in patients with chronic kidney disease at the initiation of renal replacement therapy: an angiographic examination. J Am Soc Nephrol. 2005;16(4):1141–1148. doi: 10.1681/ASN.2004090765
  31. Bundy JD, Cai X, Scialla JJ, et al. Serum calcification propensity and coronary artery calcification among patients with CKD: The CRIC (Chronic Renal Insufficiency Cohort) Study. Am J Kidney Dis. 2019;73(6):806–814. doi: 10.1053/j.ajkd.2019.01.024
  32. Yao Z, Wang C, Zhang Q, et al. Prevalence of abdominal artery calcification in dialysis patients with end-stage renal disease: a systematic review and meta-analysis. Int Urol Nephrol. 2017;49(11):2061–2069. doi: 10.1007/s11255-017-1685-9
  33. Lee SJ, Lee IK, Jeon JH. Vascular calcification-new insights into its mechanism. Int J Mol Sci. 2020;21(8):2685. doi: 10.3390/ijms21082685
  34. Kousios A, Kouis P, Hadjivasilis A, Panayiotou A. Cardiovascular risk assessment using ultrasonographic surrogate markers of atherosclerosis and arterial stiffness in patients with chronic renal impairment: a narrative review of the evidence and a critical view of their utility in clinical practice. Can J Kidney Health Dis. 2020;7:2054358120954939. doi: 10.1177/2054358120954939
  35. Hsu BG, Wang CH, Lin YL, et al. Serum trimethylamine n-oxide level is associated with peripheral arterial stiffness in advanced non-dialysis chronic kidney disease patients. Toxins (Basel). 2022;14(8):526. doi: 10.3390/toxins14080526
  36. Huang PY, Hsu BG, Lai YH, et al. Serum trimethylamine n-oxide level is positively associated with aortic stiffness measured by carotid-femoral pulse wave velocity in patients undergoing maintenance hemodialysis. Toxins (Basel). 2023;15(9):572. doi: 10.3390/toxins15090572
  37. He L, Yang W, Yang P, et al. Higher serum trimethylamine-N-oxide levels are associated with increased abdominal aortic calcification in hemodialysis patients. Ren Fail. 2022;44(1):2019–2027. doi: 10.1080/0886022X.2022.2145971
  38. Wang CH, Lai YH, Kuo CH, et al. Association between serum indoxyl sulfate levels and endothelial function in non-dialysis chronic kidney disease. Toxins (Basel). 2019;11(10):589. doi: 10.3390/toxins11100589
  39. Rossi M, Campbell K, Johnson D, et al. Uraemic toxins and cardiovascular disease across the chronic kidney disease spectrum: an observational study. Nutr Metab Cardiovasc Dis. 2014;24(9):1035–1042. doi: 10.1016/j.numecd.2014.04.006
  40. Glorieux G, Vanholder R, Van Biesen W, et al. Free p-cresyl sulfate shows the highest association with cardiovascular outcome in chronic kidney disease. Nephrol Dial Transplant. 2021;36(6):998–1005. doi: 10.1093/ndt/gfab004
  41. Gasanov MZ, Kolomyitseva MN, Batyushin MM. The role of uremic intoxication in the development of cardiovascular remodeling in patients with chronic kidney disease stages 3a-5d. The Russian Archives of Internal Medicine. 2021;11(5):370–379. EDN: HXPOYN doi: 10.20514/2226-6704-2021-11-5-370-379
  42. Dzgoeva FU, Remizov OV, Goloeva VG, Ikoeva ZR. Clinical significance of uremic toxin indoxyl sulfate and inflammation in the development of vascular calcification and cardiovascular complications in stage C3–C5D chronic kidney disease. Terapevticheskii arkhiv. 2023;95(6):468–474. EDN: SJZZPD doi: 10.26442/00403660.2023.06.202267

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».