Neural network prediction of difficult tracheal intubation risk by using the patient’s face image

Cover Page

Cite item

Full Text

Abstract

Background. The prognosis of the difficult tracheal intubation remains an essential problem. The effectiveness of using predictors does not allow to foreseen such situation accurately.

The purpose of the study was to develop a predictive system and evaluate its effectiveness in difficult tracheal intubation based on facial image analysis combined with the most significant predictors of difficult intubation.

Materials and methods. A database based on the registration of difficult intubation predictors was developed. It was based on the patient’s face images with marked reference points. It allowed to estimate the information signs associated with the difficult tracheal intubation. The degree of intubation severity was determined directly during the intubation process according to the proposed original scale of severity.

Results. The classifier was synthesized by using the self-organization neural network method. The trained neural network was the basis of the classifier model implemented as a computer application. The sensitivity of the difficult tracheal intubation prognosis was 90.90%, specificity was 97.02%, the prognostic value of the positive result was 58.82%, the negative one was 99.56%.

Conclusions. The proposed decision support system allows patients to be stratified into groups according to the degree of difficult tracheal intubation risk. In addition, the self-learning process of the system continues as the new data become available. This allows to improve its efficiency continuously.

About the authors

A. A. Aidaraliev

International University of Kyrgyzstan

Email: volkovich_oleg@mail.ru
Kyrgyzstan, Bishkek

O. V. Volkovich

Chui Regional United Hospital

Author for correspondence.
Email: volkovich_oleg@mail.ru
Kyrgyzstan, Bishkek

E. L. Mirkin

International University of Kyrgyzstan

Email: volkovich_oleg@mail.ru
Kyrgyzstan, Bishkek

S. S. Nezhinsky

International University of Kyrgyzstan

Email: volkovich_oleg@mail.ru
Kyrgyzstan, Bishkek

References

  1. Cook TM, Woodall N, Frerk C; Fourth National Audit Project. Major complications of airway management in the UK: results of the Fourth National Audit Project of the Royal College of Anaesthetists and the Difficult Airway Society. Part 1: anaesthesia. Br J Anaesth. 2011;106(5):617-631. https://doi.org/10.1093/bja/aer058.
  2. Hove LD, Steinmetz J, Christoffersen JK, et al. Analysis of deaths related to anesthesia in the period 1996-2004 from closed claims registered by the Danish patient insurance association. Anesthesiology. 2007;106(4):675-680. https://doi.org/10.1097/01.anes.0000264749.86145.e5.
  3. Hagberg CA, Benumof J. Benumof and Hagberg’s airway management. 3rd ed. Philadelphia, PA: Elsevier/Saunders; 2013. 1141 p.
  4. Connor CW, Segal S. Accurate classification of difficult intubation by computerized facial analysis. Anesth Analg. 2011;112(1):84-93. https://doi.org/10.1213/ane. 0b013e31820098d6.
  5. Nørskov AK, Wetterslev J, Rosenstock CV, et al. Effects of using the simplified airway risk index vs usual airway assessment on unanticipated difficult tracheal intubation — a cluster randomized trial with 64,273 participants. Br J Anaesth. 2016;116(5):680-689. https://doi.org/10.1093/bja/aew057.
  6. Айдаралиев А.А., Волкович О.В., Миркин Е.Л., и др. Интеллектуальная система поддержки принятия решений в прогнозировании риска трудной интубации трахеи // Врач и информационные технологии. – 2018. – № 1. – С. 59–67. [Aidaraliev AA, Volkovich OV, Mirkin EL, et al. Intelligent decision supports system in prediction of difficult tracheal intubation. Vrach i informacionnye tehnologii. 2018;(1):59-67. (In Russ.)]
  7. Eberhart L, Arndt C, Aust H, et al. A simplified risk score to predict difficult intubation: development and prospective evaluation in 3763 patients. Eur J Anaesthesiol. 2010;27(11):935-940. https://doi.org/10.1097/eja.0b013e328338883c.
  8. el-Ganzouri AR, McCarthy RJ, Tuman KJ, et al. Preoperative airway assessment: predictive value of a multivariate risk index. Anesth Analg. 1996;82(6):1197-1204. https://doi.org/10.1097/00000539-199606000-00017.
  9. Wilson ME, Spiegelhalter D, Robertson JA, Lesser P. Predicting difficult intubation. Br J Anaesth. 1988;61(2):211-216. https://doi.org/10.1093/bja/61.2.211.
  10. Langeron O, Cuvillon P, Ibanez-Esteve C, et al. Prediction of difficult tracheal intubation. Anesthesiology. 2012;117(6):1223-1233. https://doi.org/10.1097/aln.0b013e31827537cb.
  11. Naguib M, Scamman FL, O’Sullivan C, et al. Predictive performance of three multivariate difficult tracheal intubation models: a double-blind, case-controlled study. Anesth Analg. 2006;102(3):818-824. https://doi.org/10.1213/01.ane.0000196507.19771.b2.
  12. Shiga T, Wajima Z, Inoue T, Sakamoto A. Predicting difficult intubation in apparently normal patients. Anesthesiology. 2005;103(2):429-437. https://doi.org/10.1097/ 00000542-200508000-00027.
  13. Suzuki N, Isono S, Ishikawa T, et al. Submandible angle in nonobese patients with difficult tracheal intubation. Anesthesiology. 2007;106(5):916-923. https://doi.org/10.1097/01.anes.0000265150.71319.91.
  14. Connor CW, Segal S. The importance of subjective facial appearance on the ability of anesthesiologists to predict difficult intubation. Anesth Analg. 2014;118(2):419-427. https://doi.org/10.1213/ANE.0000000000000012.
  15. Cuendet GL, Schoettker P, Yuce A, et al. Facial image analysis for fully automatic prediction of difficult endotracheal intubation. IEEE Trans Biomed Eng. 2016;63(2):328-339. https://doi.org/10.1109/TBME.2015. 2457032.
  16. Mirkin B, Mirkin EL, Gutman PO. State-feedback adaptive tracking of linear systems with input and state delays. Int J Adapt Control Signal Process. 2009;23(6):567-580. https://doi.org/10.1002/acs.1070.
  17. Миркин Е.Л., Нежинских С.С. Случайная стратегия автоматизированного синтеза топологии нейронной сети // Автоматизированные технологии и производства. – 2016. – № 3. – С. 48−55. [Mirkin EL, Nezhinskikh SS. Random strategy of forming a self-organizing neural network topology. Avtomatizirovannye tekhnologii i proizvodstva. 2016;(3):48-55. (In Russ.)]
  18. Шаршеналиев Ж.Ш., Миркин Е.Л. Синтез модифицированных алгоритмов адаптивного управления процессом роста монокристаллов кремния // Мехатроника, автоматизация, управление. – 2012. – № 3. – С. 37−43. [Sharshenaliev ZhSh, Mirkin EL. Synthesis of modified adaptive control algorithms growth process of silicon single crystals. Mekhatronika, Avtomatizatsiya, Upravlenie. 2012;(3):37-43. (In Russ.)]
  19. Акрамов Э.Х., Миркин Е.Л., Волкович О.В., и др. Разработка компьютерной системы диагностики показания к операции по поводу синдрома кишечной непроходимости // Проблемы автоматики и управления. – 2015. – № 2. – С. 56−63. [Akramov EKh, Mirkin EL, Volkovich OV, Nezhinskikh SS, Saliev AT. Development of computer diagnostic systems indications for surgery for intestinal obstruction syndrome. Problemy avtomatiki i upravleniya. 2015;(2):56-63. (In Russ.)]
  20. Акрамов Э.Х., Волкович О.В., Васильева О.И. Успешное оперативное лечение длительной обструкции мочеточника // Хирургия. Журнал им. Н.И. Пирогова. – 2006. – № 4. – С. 74. [Akramov EKh, Volkovich OV, Vasil’eva OI. Uspeshnoe operativnoe lechenie dlitel’noi obstruktsii mochetochnika. Khirurgiia, Moskva. 2006;(4):74. (In Russ.)]
  21. Волкович О.В., Молдобаева Н.Т. Унифицированная оценка степени травматичности операции и ее корреляция с интенсивностью послеоперационного болевого синдрома // Хирургия, морфология, лимфология. – 2007. – Т. 4. – № 8. – С. 53−55. [Volkovich OV, Moldobaeva N.T. Unifitsirovannaya otsenka stepeni travmatichnosti operatsii i ee korrektsiya s intensivnost’yu posleoperatsionnogo bolevogo sindroma. Khirurgiya, morfologiya, limfologiya. 2007;4(8):53-55. (In Russ.)]

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. A profile photo with highlighted landmarks. Point 1 — tip of the nose, point 2 — tragus, point 3 — mental protuberance, point 4 — point of visual transition of the neck into submandibular region. Line segment A connects points 1 and 2, line segment B connects points 2 and 3, line segment C connects points 3 and 4. Line F lies in the frontal plane at level 2 (tragus). Line G lies in frontal plane at the level of point 4. Line H lies in the frontal plane at the level of point 3. Line segment D connects lines G and H. Line E connects lines G and F. Angle α — submandibular angle

Download (130KB)
3. Fig. 2. Phased evolution of the integrated neural network training error

Download (197KB)
4. Fig. 3. The information matrix of the result of training a neural network in the original sample

Download (204KB)
5. Fig. 4. The photo shows the reference points

Download (106KB)

Copyright (c) 2019 Aidaraliev A.A., Volkovich O.V., Mirkin E.L., Nezhinsky S.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».