Use of the Highly Attenuated Vaccinia Virus, Strain NYVAC, as Recombinant Vector for Construction Vaccine Against HIV Infection

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Despite significant advances in antiretroviral therapy (ART), HIV/AIDS continues to pose a serious global public health threat. According to 2021 statistics, there were 1.5 million new HIV infections worldwide, with approximately 38.4 million people living with the virus. While ART has transformed HIV into a manageable chronic condition, a preventive vaccine remains the most promising solution for controlling the epidemic, particularly in developing countries with limited healthcare resources. This review focuses on the attenuated vaccinia virus strain NYVAC as a promising recombinant vector platform for HIV vaccine development. Therefore this recombinant vector was used as share in strategy immunization prime/boost in common with DNA-vaccines. As vector’s virus NYVAC is attenuated and safe for man with immunodeficiency as considerate for creation of vaccines, in main, against AIDS. Only in alone clinical trial RV144 was received modest positive response against challenge by human deficiency virus. Therefore, comparative characteristic of immune responses, inducing by recombinant vector ALVAC, used in this trial, with recombinant vector NYVAC with identical conditions, reveal preference vector NYVAC. It triggers research about substitution vector ALVAC on NYVAC, preserved regimen mimicking that of the RV144: two prime / two boost, using only one vector, insertion maximum quantity genes of antigenic determinants human immunodeficiency virus, addition protein gp120 for enhance quantity envelope proteins. Besides this, replication-restricted strain NYVAC has been modified by reincorporation in her genome of the earlier deleted genes K1L and C7L with generation vector’s virus NYVAC-C-KC, which replicate in human cells — keratinocytes and dermal fibroblasts. Again receiving strain NYVAC-C-KC, additionally modified by deleting immunomodulate gene B19R an inhibitor of the type I interferon response with generated new vector’s virus NYVAC-C-KC-∆ B19R, which expressed greater quantity antigenic determinants of human immunodeficiency virus by increasing time reproduction in human cells. All this properties of new vector’s virus NYVAC, most probably, positive plead on effectivity vaccine against HIV infection.

About the authors

Lyudmila F. Stovba

48 Central Scientific Research Institute of the Ministry of Defense of the Russian Federation

Email: 48cnii@mil.ru
ORCID iD: 0000-0002-7985-5516

PhD in Biology

Russian Federation, 11 Oktyabrskaya str., 141306, Sergiev Posad, Moscow Region

Alexandr А. Petrov

48 Central Scientific Research Institute of the Ministry of Defense of the Russian Federation

Email: 48cnii@mil.ru
ORCID iD: 0000-0002-9714-2085

MD, PhD

Russian Federation, 11 Oktyabrskaya str., 141306, Sergiev Posad, Moscow Region

Oleg V. Chukhralia

48 Central Scientific Research Institute of the Ministry of Defense of the Russian Federation

Email: 48cnii@mil.ru
ORCID iD: 0000-0002-2603-0860
Russian Federation, 11 Oktyabrskaya str., 141306, Sergiev Posad, Moscow Region

Dmitriy I. Paveliev

48 Central Scientific Research Institute of the Ministry of Defense of the Russian Federation

Author for correspondence.
Email: dpavelev@inbox.ru
ORCID iD: 0000-0003-3204-1897
SPIN-code: 1443-5000
Russian Federation, 11 Oktyabrskaya str., 141306, Sergiev Posad, Moscow Region

Sergey A. Melnikov

48 Central Scientific Research Institute of the Ministry of Defense of the Russian Federation

Email: 48cnii@mil.ru

PhD in Biology

Russian Federation, 11 Oktyabrskaya str., 141306, Sergiev Posad, Moscow Region

Sergey V. Borisevich

48 Central Scientific Research Institute of the Ministry of Defense of the Russian Federation

Email: 48cnii@mil.ru
ORCID iD: 0000-0002-6742-3919
SPIN-code: 5753-3400

MD, PhD, Professor, Academician of RAS

Russian Federation, 11 Oktyabrskaya str., 141306, Sergiev Posad, Moscow Region

References

  1. Goebel SJ, Johnson GP, Perkus ME, et al. The complete DNA sequence of vaccinia virus (Appendix). Virology. 1990;179(1):247−263. doi: https://doi.org/10.1016/0042-6822(90)90294-2
  2. Midgley CM, Putz MM, Weber JN, et al. Vaccinia virus strain NYVAC induces substantially lower and qualitatively different human antibody responses compared with strains Lister and Dryvax. J Gen Virol. 2008;89(Pt 12):2992−2997. doi: https://doi.org/10.1099/vir.0.2008/004440-0
  3. Tartaglia J, Perkus ME, Taylor J, et al. NYVAC: a highly attenuated strain of vaccinia virus. Virology. 1992;188(1):217−232. doi: https://doi.org/10.1016/0042-6822(92)90752-b
  4. Nájera JL, Gómez CE, Domingo-Gil E, et al. Cellular and biochemical differences between two attenuated poxvirus vaccine candidates (MVA and NYVAC) and role of the C7L gene. J Virol. 2006;80(12):6033−6047. doi: https://doi.org/10.1128/JVI.02108-05
  5. Abimiku AG, Franchini G, Tartaglia J, et al. HIV-1 recombinant poxvirus vaccine induces cross-protection against HIV-2 challenge in rhesus macaques. Nat Med. 1995;1(4):321–329. doi: https://doi.org/10.1038/nm0495-321
  6. Abimiku AG, Robert-Gurof M, Benson J, et al. Long-term survival of SIV mac251-infected macaques previously immunized with NYVAC-SIV vaccines. J Acquired Immune Defic Syndr Hum Retrovirol. 1997;15:78–85.
  7. Franchini G, Gurgo C, Guo HG, et al. Sequence of simian immunodeficiency virus and its relationship to the human immunodeficiency viruses. Nature. 1987;328(6130):539–543. doi: https://doi.org/10.1038/328539a0
  8. Brockmeier SL, Lager KM, Tartaglia J, et al. Vaccination of pigs against pseudorabies with highly attenuated vaccinia (NYVAC) recombinant viruses. Vet Microbiol. 1993;38(1–2):41–58. doi: https://doi.org/10.1016/0378-1135(93)90074-h
  9. Tine JA, Lanar DE, Smith DM, et al. NYVAC-Pf7: a poxvirus-vectored, multiantigen, multistage vaccine candidate for plasmodium falciparum malaria. Infect Immun. 1996;64(9):3833–3844. doi: https://doi.org/10.1128/iai.64.9.3833-3844.1996
  10. Xiang ZQ, Spitalnik S, Tran M, et al. Vaccination with a plasmid vector carrying the rabies virus glycoprotein gene induces protective immunity against rabies virus. Virology. 1994;199(1):132−140. doi: https://doi.org/10.1006/viro.1994.1105
  11. Uimer JB, Donnelly JJ, Parker SE, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science. 1993;259(5102):1745−1749. doi: https://doi.org/10.1126/science.8456302
  12. Yokoyama M, Zhang J, Whitton JL. DNA immunization confers protection against lymphocytic choriomeningitis virus infection. J Virol. 1995;69(4):2684−2688. doi: https://doi.org/10.1128/JVI.69.4.2684-2688.1995
  13. Yasutomi Y, Robinson HL, Lu S, et al. Simian immunodeficiency virus-specific cytotoxic T-lymphocyte induction through DNA vaccination of rhesus monkeys. J Virol. 1996;70(1):678−681. doi: https://doi.org/10.1128/JVI.70.1.678-681.1996
  14. Boyer JD, Wang B, Ugen KE. In vivo protective anti-HIV immune responses in non-human primates through DNA immunization. J Med Primatol. 1996; 25(3):242−250. doi: https://doi.org/10.1111/j.1600-0684.1996.tb00022.x
  15. Boyer JD, Ugen KE, Wang B, et al. Protection of chimpanzees from high-dose heterologous HIV-1 challenge by DNA vaccination. Nat Med. 1997;3(5):526−532. doi: https://doi.org/10.1038/nm0597-526
  16. Lu S, Arthos J, Montefiori DC, et al. Simian immunodeficiency virus DNA vaccine trial in macaques. J Virol. 1996;70(6):3978–3991. doi: https://doi.org/10.1128/JVI.70.6.3978-3991.1996
  17. Kazanji M, Tartaglia J, Franchini G, et al. Immunogenicity and protective efficacy of recombinant human T-cell leukemia/ lymphoma virus type 1 NYVAC and naked DNA vaccine candidates in squirrel monkeys (Saimiri sciureus). J Virol. 2001;75(13):5939−5948. doi: https://doi.org/10.1128/JVI.75.13.5939-5948.2001
  18. Hanke T, Blanchard TJ, Schneider J, et al. Enhancement of MHC class I-restricted peptide-specific T-cell induction by a DNA prime/MVA boost vaccination regime. Vaccine. 1998;16(5):439–445. doi: https://doi.org/10.1016/s0264-410x(97)00226-0
  19. Hel Z, Tsai W, Thornton A, et al. Potentiation of simian immunodeficiency virus (SIV)-specific CD4(+) and CD8(+) T cell responses by a DNA-SIV and NYVAC-SIV prime/boost regimen. J Immunol. 2001;167(12):7180–7191. doi: https://doi.org/10.4049/jimmunol.167.12.7180
  20. McCormack S, Stöhr W, Barber T, et al. EV02: a phase I trial to compare the safety and immunogenicity of HIV DNA-C prime-NYVAC-C boost to NYVAC-C alone. Vaccine. 2008;26(25):3162–3174. doi: https://doi.org/10.1016/j.vaccine.2008.02.072
  21. Perreau M, Welles HC, Harari A, et al. DNA/NYVAC vaccine regimen induces HIV-specific CD4 and CD8 T-cell responses in intestinal mucosa. J Virol. 2011;85(19):9854–9862. doi: https://doi.org/10.1128/JVI.00788-11
  22. Asbach B, Kliche A, Köstler J, et al. Potential to streamline heterologous DNA prime and NYVAC/Protein boost HIV vaccine regimens in rhesus macaques by employing improved antigens. J Virol. 2016;90(8):4133−4149. doi: https://doi.org/10.1128/JVI.03135-15
  23. Lévy Y, Lacabaratz C, Ellefsen-Lavoie K, et al. Optimal priming of poxvirus vector (NYVAC)-based HIV vaccine regimens for T-cell responses requires three DNA injections. Results of the randomized multicentre EV03/ANRS VAC20 Phase I/II Trial. PLoS Pathog. 2020;16(6):e1008522. doi: https://doi.org/10.1371/journal.ppat.1008522
  24. Perdiguero B, Asbach B, Gómez CE, et al. Early and long-term HIV-1 immunogenicity induced in macaques by the combined administration of DNA, NYVAC and Env protein-based vaccine candidates: the AUP512 study. Front Immunol. 2022;13:939627. doi: https://doi.org/10.3389/fimmu.2022.939627
  25. Perdiguero B, Pérez P, Marcos-Villar L, et al. Highly attenuated poxvirus-based vaccines against emerging viral diseases. J Mol Biol. 2023;435(15):168173. doi: https://doi.org/10.1016/j.jmb.2023.168173
  26. Godot V, Tcherakian C, Gil L, et al. TLR-9 agonist and CD40-targeting vaccination induces HIV-1 envelope-specific B cells with a diversified immunoglobulin repertoire in humanized mice. PLoS Pathog. 2020;16(11):e1009025. doi: https://doi.org/10.1371/journal.ppat.1009025
  27. Hsu DC, O’Connell RJ. Progress in HIV vaccine development. Hum Vaccin Immunother. 2017;13(5):1018–1030. doi: https://doi.org/10.1080/21645515.2016.1276138
  28. Wang HB, Mo QH, Yang Z. HIV vaccine research: the challenge and the way forward. J Immunol Res. 2015;2015:503978. doi: https://doi.org/10.1155/2015/503978
  29. Бобкова М.Р. Иммунитет и ВИЧ-инфекция. — М.: Олимпия Пресс, 2006. — 240 с. [Bobkova MR. Jmmunity and HIV infection. Moscow: Olimpia Press; 2006. 240 p. (In Russ.)]
  30. Pitisuttithum P, Marovich MA. Prophylactic HIV vaccine: vaccine regimens in clinical trials and potential challenges. Expert Rev Vaccines. 2020;19(2):133–142. doi: https://doi.org/10.1080/14760584.2020.1718497
  31. HVTN 702 Clinical Trial of an HIV Vaccine Stopped [Press release]. Geneva, Switzerland, 2020. Available from: https://www.unaids.org/en/resources/presscentre/pressreleaseandstatementarchive/2020/february/20200204_vaccine
  32. Rerks-Ngarm S, Pitisuttihum P, Nitayaphan S, et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med. 2009;361(23):2209–2220. doi: https://doi.org/https://doi.org/10.1056/NEJMoa0908492
  33. García-Arriaza J, Perdiguero B, Heeney J, et al. Head-to-head comparison of poxvirus NYVAC and ALVAC vectors expressing identical HIV-1 clade C immunogens in prime-boost combination with env protein in nonhuman primates. J Virol. 2015;89(16):8525–8539. doi: https://doi.org/10.1128/JVI.01265-15
  34. Bart PA, Goodall R, Barber T, et al. EV01: a phase I trial in healthy HIV negative volunteers to evaluate a clade C HIV vaccine, NYVAC-C undertaken by the EuroVacc Consortium. Vaccine. 2008;26(25):3153–3161. doi: https://doi.org/10.1016/j.vaccine.2008.03.083
  35. Harari A, Rozot V, Cavassini M, et al. NYVAC immunization induces polyfunctional HIV-specific T-cell responses in chronically-infected, ART-treated HIV patients. Eur J Immunol. 2012;42(11):3038–308. doi: https://doi.org/10.1002/eji .201242696
  36. Saunders KO, Santra S, Parks R, et al. Immunogenicity of NYVAC prime-protein boost human immunodeficiency virus Type 1 envelope vaccination and simian-human immunodeficiency virus challenge of nonhuman primates. J Virol. 2018;92(8):e02035-17. doi: https://doi.org/10.1128/JVI.02035-17
  37. García-Arriaza J, Perdiguero B, Heeney JL, et al. HIV/AIDS vaccine candidates based on replication-competent recombinant poxvirus NYVAC-C-KC expressing trimeric gp140 and Gag-derived virus-like particles or lacking the viral molecule B19 that inhibits type I interferon activate relevant HIV-1-Specific B and T cell immune functions in nonhuman primates. J Virol. 2017;91(9):e02182-16. doi: https://doi.org/10.1128/JVI.02182-16
  38. Kibler KV, Asbach B, Perdiguero B, et al. Replication-competent NYVAC-KC yields improved immunogenicity to HIV-1 antigens in rhesus macaques compared to nonreplicating NYVAC. J Virol. 2019;93:e01513-18. doi: https://doi.org/10.1128/JVI.01513-18
  39. Kibler KV, Gomez CE, Perdiguero B, et al. Improved NYVAC-Based vaccine vectors. PLoS One. 2011;6(11):e25674. doi: https://doi.org/10.1371/journal.pone.0025674
  40. Delaloye J, Filali-Mouhim A, Cameron MJ, et al. Interleukin-1- and Type I interferon-dependent enhanced immunogenicity of an NYVAC-HIV-1 env-gag-pol-nef vaccine vector with dual deletions of Type I and Type II interferon-binding proteins. J Virol. 2015;89(7):3819–3832. doi: https://doi.org/10.1128/JVI.03061-14
  41. Vijayan A, Garcia-Arriaza J, Raman SC, et al. A chimeric HIV-1 gp120 fused with vaccinia virus 14K (A27) protein as an HIV immunogen. PLoS One. 2015;10(7):e0133595. doi: https://doi.org/10.1371/journal.pone.0133595
  42. Beaiguero В, Gómez CE, Cepeda V, et al. Virological and immunological characterization of novel NYVAC-Based HIV/AIDS vaccine candidates expressing clade C trimeric soluble gp140(ZM96) and Gag(ZM96)-Pol-Nef(CN54) as virus-like particles. J Virol. 2015;89(2):970–988. doi: https://doi.org/10.1128/JVI.02469-14

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 "Paediatrician" Publishers LLC

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».