COVID-19, септический шок и синдром диссеминированного внутрисосудистого свертывания крови. Часть 2


Цитировать

Полный текст

Аннотация

В статье рассматриваются вопросы нарушения системы гемостаза у пациентов с COVID-19. Нарастание коагулопатии, характерной для диссеминированного внутрисосудистого свертывания крови (ДВС-синдрома), ― ключевой признак ухудшения состояния и неблагоприятного прогноза у пациентов с COVID-19. Приводятся данные, полученные китайскими коллегами, согласно которым значительно повышенный уровень D-димера является одним из предикторов смерти. Также освещены предварительные рекомендации Международного общества тромбоза и гемостаза (International Society on Thrombosis and Haemostasis, ISTH, 2020) по определению таких маркеров, как D-димер, протромбиновое время и количество тромбоцитов, в качестве значимых прогностических маркеров у тяжелых больных COVID-19. Обосновывается необходимость антикоагулянтной терапии у госпитализированных больных. В статье обсуждаются особенности сепсиса у беременных. Приводятся данные метаанализа 19 исследований, посвященных оценке осложнений и исходов беременности у пациенток с различными коронавирусными инфекциями. Несмотря на осложненное течение беременности, не отмечено ни одного случая вертикальной передачи вирусной инфекции. В патогенезе тяжелых осложнений COVID-19 с формированием тяжелого острого респираторного дистресс-синдрома, полиорганной дисфункции ведущую роль играют супервоспаление и цитокиновый шторм. В статье в связи с вирусным сепсисом обсуждается роль гемофагоцитарного лимфогистиоцитоза как гипервоспалительного синдрома, характеризуемого фульминантной и фатальной гиперцитокинемией с полиорганной недостаточностью, роль гиперферритинемии в прогнозировании исходов тяжелого сепсиса. Обсуждаются группы пациентов высокого риска развития летальных исходов, а также необходимость антикоагулянтной и антицитокиновой терапии у больных COVID-19.

Об авторах

Виктория Омаровна Бицадзе

Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)

Автор, ответственный за переписку.
Email: vikabits@mail.ru
ORCID iD: 0000-0001-8404-1042
SPIN-код: 5930-0859

д.м.н., профессор

Россия, 119991, Москва, ул. Трубецкая, д. 8-2

Джамиля Хизриевна Хизроева

Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)

Email: jamatotu@gmail.com
ORCID iD: 0000-0002-0725-9686
SPIN-код: 8225-4976

д.м.н., профессор

Россия, Москва

Александр Давидович Макацария

Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)

Email: gemostasis@mail.ru
ORCID iD: 0000-0001-7415-4633
SPIN-код: 7538-2966

д.м.н., академик РАН

Россия, Москва

Екатерина Викторовна Слуханчук

Российский научный центр хирургии им. акад. Б.В. Петровского

Email: beloborodova@rambler.ru
ORCID iD: 0000-0001-7441-2778
SPIN-код: 7423-8944

к.м.н., доцент

Россия, Москва

Мария Владимировна Третьякова

ООО «Лечебный Центр»

Email: tretyakova777@yandex.ru
ORCID iD: 0000-0002-3628-0804

к.м.н., доцент

Россия, Москва

Джузеппе Риццо

Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет); Римский Университет Тор Вергата

Email: giuseppe.rizzo@uniroma2.it
ORCID iD: 0000-0002-5525-4353

д.м.н., профессор

Россия, Москва; Рим

Жан-Кристоф Гриc

Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет); Университет Монпелье

Email: jean.christophe.gris@chu-nimes.fr
ORCID iD: 0000-0002-9899-9910

д.м.н., профессор

Франция, Москва; Монпелье

Исмаил Элалами

Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет); Медицинский Университет Сорбонна, Университетский Госпиталь Тенон

Email: ismail.elalamy@aphp.fr
ORCID iD: 0000-0002-9576-1368

д.м.н., профессор

Франция, Москва; Париж

Владимир Николаевич Серов

Научный центр акушерства, гинекологии и перинатологии им. академика В.И. Кулакова

Email: v_serov@oparina4.ru
ORCID iD: 0000-0003-2976-7128

д.м.н., академик РАН

Россия, Москва

Андрей Сергеевич Шкода

Городская клиническая больница № 67 им. Л.А. Ворохобова

Email: 67gkb@mail.ru
ORCID iD: 0000-0002-9783-1796

д.м.н.

Россия, Москва

Наталья Викторовна Самбурова

Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)

Email: nsamburova@bk.ru
ORCID iD: 0000-0002-4564-8439
SPIN-код: 9084-7676

к.м.н., доцент

Россия, Москва

Список литературы

  1. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844−847. doi: 10.1111/jth.14768.
  2. Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID‐19. J Thromb Haemost. 2020. Online ahead of print. doi: 10.1111/jth.14810.
  3. Lippi G, Plebani M, Henry MB. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta. 2020;506:145−148. doi: 10.1016/j.cca.2020.03.022.
  4. Lin G-L, McGinley JP, Drysdale SB, Pollard AJ. Epidemiology and immune pathogenesis of viral sepsis. Front Immunol. 2018;9:2147. doi: 10.3389/fimmu.2018.02147.
  5. Hussain NY, Uriel A, Mammen C, Bonington A. Disseminated herpes simplex infection during pregnancy, rare but important to recognise. Qatar Med J. 2014;(1):61–64. doi: 10.5339/qmj.2014.11.
  6. Goodman ZD, Ishak KG, Sesterhenn IA. Herpes simplex hepatitis in apparently immunocompetent adults. Am J Clin Pathol. 1986;85(6):694–699. doi: 10.1093/ajcp/85.6.694.
  7. Escobar M, Nieto AJ, Loaiza-Osorio S, et al. Pregnant women hospitalized with chikungunya virus infection, Colombia, 2015. Emerg Infect Dis. 2017;23(11):1777–1783. doi: 10.3201/eid2311.170480.
  8. Acosta CD, Harrison DA, Rowan K, et al. Maternal morbidity and mortality from severe sepsis: a national cohort study. BMJ Open. 2016;6(8):e012323. doi: 10.1136/bmjopen-2016-012323.
  9. Sauerbrei A, Wutzler P. Herpes simplex and varicella-zoster virus infections during pregnancy: current concepts of prevention, diagnosis and therapy. Part 2: Varicella-zoster virus infections. Med Microbiol Immunol. 2007;196:95–102. doi: 10.1007/s00430-006-0032-z.
  10. Acosta CD, Knight M, Lee HC, et al. The continuum of maternal sepsis severity: incidence and risk factors in a population-based cohort study. PLoS ONE. 2013;8:e67175. doi: 10.1371/journal.pone.0067175.
  11. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980−2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1459–1544. doi: 10.1016/s0140-6736(16)31012-1.
  12. Acosta CD, Harrison DA, Rowan K, et al. Maternal morbidity and mortality from severe sepsis: a national cohort study. BMJ Open. 2016;6(8):e012323. doi: 10.1136/bmjopen-2016-012323.
  13. Mason KL, Aronoff DM. Postpartum group a Streptococcus sepsis and maternal immunology. Am J Reprod Immunol. 2012;67(2):91–100. doi: 10.1111/j.1600-0897.2011.01083.x.
  14. Mor G, Cardenas I, Abrahams V, Guller S. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci. 2011;1221(1):80–87. doi: 10.1111/j.1749-6632.2010.05938.x.
  15. Benster B, Wood EJ. Immunoglobulin levels in normal pregnancy and pregnancy complicated by hypertension. J Obstet Gynaecol Br Commonw. 1970;77(6):518–522. doi: 10.1111/j.1471-0528.1970.tb03559.x.
  16. Mor G, Cardenas I. The immune system in pregnancy: a unique complexity. Am J Reprod Immunol. 2010;63(6):425–433. doi: 10.1111/j.1600-0897.2010.00836.x.
  17. Di Mascio D, Khalil A, Saccone G, et al. Outcome of Coronavirus spectrum infections (SARS, MERS, COVID -19) during pregnancy: a systematic review and meta-analysis. Online ahead of print. Am J Obstet Gynecol MFM. 2020;100107. doi: 10.1016/j.ajogmf.2020.100107.
  18. Ramos-Casals M, Brito-Zeron P, Lopez-Guillermo A, et al. Adult haemophagocytic syndrome. Lancet. 2014;383(9927):1503−1516. doi: 10.1016/S0140-6736(13)61048-X.
  19. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033−1034. doi: 10.1016/S0140-6736(20)30628-0.
  20. Shoenfeld Y. Corona (COVID-19) time musings: our involvement in COVID-19 pathogenesis, diagnosis, treatment and vaccine planning. Autoimmun Rev. 2020;102538. doi: 10.1016/j.autrev.2020.102538.
  21. Seguin A, Galicier L, Boutboul D, et al. Pulmonary involvement in patients with hemophagocytic lymphohistiocytosis. Chest. 2016;149(5):1294–1301. doi: 10.1016/j.chest.2015.11.004.
  22. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497−506. doi: 10.1016/S0140-6736(20)30183-5.
  23. Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. Online ahead of print. 2020;1−3. doi: 10.1007/s00134-020-05991-x.
  24. Nicastri E, Petrosillo N, Bartoli AT, et al. National institute for the infectious diseases “l. spallanzani” irccs. recommendations for COVID-19 clinical management. Inf Diseas Rep. 2020;12(1):8543. doi: 10.4081/idr.2020.8543.
  25. Shimabukuro-Vornhagen A, Gödel P, Subklewe M, et al. Cytokine release syndrome. J Immun Canc. 2018;6(1):56. doi: 10.1186/s40425-018-0343-9.
  26. Eloseily E, Weiser P, Eloseily EM, et al. Benefit of anakinra in treating pediatric secondary hemophagocytic lymphohistiocytosis Arthritis Rheum. 2020;72(2):326−334. doi: 10.1002/art.41103.
  27. Honore PM, Hoste E, Molnár Z, et al. Cytokine removal in human septic shock: where are we and where are we going? Ann Intensive Care. 2019;9(1):56. doi: 10.1186/s13613-019-0530-y.
  28. Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30304-4.
  29. Stebbing J, Phelan A, Griffin I, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020;20(4):400−402. doi: 10.1016/S1473-3099(20)30132-8.
  30. Belizna C, Pregnolato F, Abad S, et al. HIBISCUS: Hydroxychloroquine for the secondary prevention of thrombotic and obstetrical events in primary antiphospholipid syndrome. Autoimmun Rev. 2018;17(12):1153−1168. doi: 10.1016/j.autrev.2018.05.012.
  31. Torigoe M, Sakata K, Ishii A, et al. Hydroxychloroquine efficiently suppresses inflammatory responses of human class-switched memory B cells via Toll-like receptor 9 inhibition. Clin Immunol. 2018;195:1−7. doi: 10.1016/j.clim.2018.07.003.
  32. Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020;6:16. doi: 10.1038/s41421-020-0156-0.
  33. Mousavi S, Moradi M, Khorshidahmad T, Motamedi M. Anti-inflammatory effects of heparin and its derivatives: a systematic review. Adv Pharmacol Sci. 2015;2015:507151. doi: 10.1155/2015/507151.
  34. Bernard GR, Vincent JL, Laterre PF, et al. Recombinant human protein C Worldwide Evaluation in Severe Sepsis (PROWESS) study group. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344(10):699−709. doi: 10.1056/NEJM200103083441001.
  35. Davidson BL, Geerts WH, Lensing AW. Low-dose heparin for severe sepsis. N Engl J Med. 2002;347(13):1036−1037. doi: 10.1056/NEJM200209263471316.
  36. Wen WX, Lee SY, Siang R, Ry K. Repurposing pentoxifylline for the treatment of fibrosis: an overview. Adv Ther. 2017;34(6):1245–1269. doi: 10.1007/s12325-017-0547-2.
  37. Romanelli RG, Caligiuri A, Carloni V, et al. Effect of pentoxifylline on the degradation of procollagen type I produced by human hepatic stellate cells in response to transforming growth factor‐β1. Br J Pharmacol. 1997;122(6):1047−1054. doi: 10.1038/sj.bjp.0701484.
  38. Yamashita CM, Dolgonos L, Zemans RL, et al. Matrix metalloproteinase 3 is a mediator of pulmonary fibrosis. Am J Pathol. 2011;179(4):1733–1745. doi: 10.1016/j.ajpath.2011.06.041.
  39. Liu X, Li Z, Liu S, et al. Therapeutic effects of dipyridamole on COVID-19 patients with coagulation dysfunction. Med Rxiv. 2020. doi: 10.1101/2020.02.27.20027557.
  40. Etulain J, Martinod K, Wong SL, et al. P-selectin promotes neutrophil extracellular trap formation in mice. Blood. 2015;126(2):242–246. doi: 10.1182/blood-2015-01-624023.
  41. Inui S, Fujikawa A, Jitsu M, et al. Chest CT findings in cases from the cruise ship “Diamond Princess” with Coronavirus Disease 2019 (COVID-19). Radiology: Cardiothoracic imaging. 2020;2(2):e204002. doi: 10.1148/ryct.2020200110.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Издательство "Педиатръ", 2020

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».