Physico-biochemical parameters of urine and blood and biominerology of urinary bladder stones in patients with bladder outlet obstruction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Bladder outlet obstruction is one of the main factors leading to the formation of stones in the urinary bladder. Understanding of the physico-biochemical processes in urine and blood, as well as the biomineralogy of urinary bladder stones, will make it possible to determine the pathogenetically justified treatment of such patients.

AIM: The aim of the study was to identify and study the relationship between the physico-biochemical parameters of urine and blood and the biomineralogical composition of urinary bladder stones in patients with bladder outlet obstruction.

MATERIALS AND METHODS: A comprehensive examination of 76 patients at the age of 37 to 89 years with urinary bladder stones occurred against the background of bladder outlet obstruction was carried out. A comprehensive diagnosis, including an assessment of the physico-biochemical parameters of urine and blood, bacteriological urine tests, radiological diagnostics, as well as biomineralogical studies of concretions, was carried out.

RESULTS: The data obtained show that not all physicochemical parameters of blood and urine of the subjects are comparable with the data of patients with nephrolithiasis. In the vast majority of the studied kidney calculi were not detected, in addition, blood biochemical parameters, including the level of stone-forming substances were within the reference values. In urine tests an increase in some lithogenic substances is detected. Urinary stones in patients with bladder outlet obstruction had a mixed composition, more often phosphates and uric acid salts were detected (75 and 54% of cases, respectively). Considering the nature of metabolism and the increase in uric acid excretion with age, as well as the presence of residual urine in case of bladder outlet obstruction, it can be assumed that uric acid is the primary matrix in cystolithiasis. The data obtained indicate a connection between the infectious process in the bladder and the composition of urinary stones. Against this background, there is a more intensive process of cystolithogenesis.

CONCLUSIONS: The algorithm for the diagnosis of urinary bladder stones secondary to bladder outlet obstruction should include not only the collection of anamnesis and the performance of routine blood and urine tests, but also specific physical and biochemical studies, as well as assess the biomineralogy of urinary stones, which will make it possible to choose an adequate tactics for the pathogenetic treatment of patients and effective metaphylaxis of stone formation.

About the authors

Tairhon H. Nazarov

I.I. Mechnikov North-Western State Medical University

Email: tair-nazarov@yandex.ru
ORCID iD: 0000-0001-9644-720X
SPIN-code: 9585-5865
Scopus Author ID: 24067548900

Dr. Sci. (Med.), Professor

Russian Federation, Saint Petersburg

Vladimir A. Nikolaev

I.I. Mechnikov North-Western State Medical University

Email: Vladimir2398@list.ru
ORCID iD: 0000-0003-2977-204X

Postgraduate student

Russian Federation, Saint Petersburg

Ivan V. Rychkov

I.I. Mechnikov North-Western State Medical University

Email: rychkov.iv@gmail.com
ORCID iD: 0000-0001-9120-6896
SPIN-code: 5240-6186

Cand. Sci. (Med.), Urologist

Russian Federation, Saint Petersburg

Kseniya E. Trubnikova

Consulting and Diagnostic Center for Children

Email: kseniya-trubnikova@yandex.ru
ORCID iD: 0000-0002-8685-3631
SPIN-code: 2916-2030

Cand. Sci. (Med.), Radiologist

Russian Federation, Saint Petersburg

Alina R. Izatulina

Saint Petersburg State University

Email: alina.izatulina@spbu.ru
ORCID iD: 0000-0002-9472-5875
SPIN-code: 1349-5661

Cand. Sci. (Geol.-mineral.), Senior Researcher

Russian Federation, Saint Petersburg

Umarjon V. Abulboqiev

I.I. Mechnikov North-Western State Medical University

Email: abulbokiev@mail.ru
ORCID iD: 0000-0001-9701-3374

Postgraduate student

Russian Federation, Saint Petersburg

Dilmurod N. Madumarov

I.I. Mechnikov North-Western State Medical University

Author for correspondence.
Email: Dima_96.kg@bk.ru
ORCID iD: 0000-0002-1469-2023

Clinical resident

Russian Federation, Saint Petersburg

References

  1. Belyj LE, Solov’ev DA, Boluchevskij DN. Patogenez narushenii urodinamiki pri infravezikal’noi obstruktsii mochevykh putei u bol’nykh dobrokachestvennoi giperplaziei prostaty. Sibirskij mediczinskij zhurnal. 2011;104(5):8–11.
  2. Gorelov VP, Gorelov SI, Dry’gin AN. Infravesicular obstruction prevention in planning of prostate cancer brachytherapy. Bulletin of the Russian Military Medical Academy. 2014;(2):216–222.
  3. Nazarov TN, Mihajlichenko VV. The efficiency of the drug tadenan for treatment of chronic prostatitis complicated by infertility. Urologiia. 2008;(4):40–43. (In Russ.)
  4. Leslie SW, Sajjad H, Murphy P.B. Bladder Stones. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK441944. Cited: 2021 Dec 20.
  5. Novikov A, Nazarov T, Startsev VY. Epidemiology of stone disease in the Russian Federation and post-soviet era. Urolithiasis: Basic Science and Clinical Practice. London; 2012. P. 97–105. doi: 10.1007/978-1-4471-4387-1_13
  6. Nazarov TKh, Akhmedov MA, Rychkov IV, et al. Urolithiasis: etiopathogenesis, diagnosis and treatment. Andrology and Genital Surgery. 2019;20(3):43–51. doi: 10.17650/2070-9781-2019-20-3-43-51
  7. Nazarov TKh, Rychkov IV, Nikolaev VA, et al. Historical and modern methods of treatment of patients with bladder stones with benign prostatic hyperplasia. Andrology and Genital Surgery. 2021;22(2):13–23. doi: 10.17650/1726-9784-2021-22-2-13-23
  8. Hiremath AC, Shivakumar KS. Cystolitholapaxy and laparoscopic sacrocolpopexy in a case of multiple urinary bladder calculi & vault prolapse. Eur J Obstet Gynecol Reprod Biol. 2019;243:12–15. doi: 10.1016/j.ejogrb.2019.10.002
  9. Nazarov TKh. Physicochemical basis of lithogenic properties of urine. Urologiia. 2007;(5):75–78.
  10. Mekke S, Roshani H, van Zanten P, et al. Simultaneous transurethral resection of the prostate and cystolithotripsy: A urological dilemma examined. Can Urol Assoc J. 2021;15(7): E361–E365. doi: 10.5489/cuaj.6743
  11. Nazarov TKh, Mihajlichenko VV, Aleksandrov VP. Metabolicheskie narusheniya pri androgenom deficite u muzhchin, stradayushchih urolitiazom. Andrology and Genital Surgery. 2008;9(2):103.
  12. Aleksandrov VP, Nazarov TKh. Effektivnost’ zamestitel’noj terapii pri androdeficite pri urolitiaze. Andrology and Genital Surgery. 2008;9(2):114a-114.
  13. Ivanov VYu, Malhasyan VA, Semenyakin IV, Pushkar’ DYu. Bladder stones and their endoscopic treatment. A modern view of the problem. Experimental and Clinical Urology. 2017;(3): 44–50.
  14. Nazarov TKh, Sharvadze KO, Ochelenko VA, et al. Diagnostika i korrektsiya metabolicheskikh narushenii u bol’nykh retsidivnym urolitiazom: uchebnoe posobie. Saint Petersburg: Izd-vo SZGMU im I.I. Mechnikova; 2021. 84 p.
  15. Nazarov TKh, Komyakov BK, Rychkov IV, Trubnikova KE. Role of biomarkers of acute kidney damage during lithotripsy of high-density stones. Urologiia. 2019;(91):42–46. doi: 10.18565/urology.2019.1.23-27
  16. Nazarov TKh, Rychkov IV, Al-Attar TKh, et al. Vybor metoda litotripsii v zavisimosti ot plotnosti kamnej: uchebnoe posobie. Saint Petersburg: Izd-vo SZGMU im I.I. Mechnikova; 2021. P. 64.
  17. Nazarov TKh, Ahmedov MA, Stecik EO, et al. The value of some physicochemical and biochemical factors of urine predisposingto recurrent urolithiasis. Preventive and Clinical Medicine. 2015;(2):65–71.
  18. Nazarov TKh, Trubnikova KE, Rychkov IV, Agagyulov MU. Biomeneralogiya mochevykh kamnej: uchebnoe posobie. Saint Petersburg: Izd-vo SZGMU im I.I. Mechnikova; 2016. P. 60.
  19. Frank-Kamenetskaya OV, Izatulina AR, Kuz’mina MA. Ion substitutions, non-stoichiometry, and formation conditions of oxalate and phosphate minerals of the human. In: Biogenic-Abiogenic interactions in natural and anthropogenic systems. Springer International Publishing: Switzerland; 2016. P. 425–442.
  20. Nikolaev AM, Kuz’mina MA, Izatulina AR, et al. Influence of the albumin substance and bacteria on formation of urinal phosphate stones (according to results of the modeling experiment). Zapiski RMO (proceedings of the Russian mineralogical society). 2014;146(6):120–133.
  21. Nazarov TKh. Sovremennye aspekty patogeneza, diagnostiki i lecheniya mochekamennoi bolezni [dissertation]. 2009. 370 p. Available from: https://www.dissercat.com/content/sovremennye-aspekty-patogeneza-diagnostiki-i-lecheniya-mochekamennoi-bolezni
  22. Golovanova OA, Punin YuO, Izatulina AR, Korol’kov VV. Crystallization of calcium oxalate monohydrate in the presence of amino acids: Features and regularities. Journal of Structural Chemistry. 2014;55(7):1356–1370. doi: 10.1134/S0022476614070166
  23. Rychkov IV. The choice of the lithotripsy method depending on the density of urinary stones and the anatomical and functional state of the kidneys [dissertation]. UFA, 2020. 132 p. Available from: https://www.dissercat.com/content/vybor-metoda-litotripsii-v-zavisimosti-ot-plotnosti-mochevykh-kamnei-i-anatomo-funktsionalno

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Uric acid calculi of the urinary bladder. a – The appearance of the calculi; b – photo of a thin section of a calculus in crossed nicols, the layered structure of the calculi is visible; c – X-ray fluorescence analysis of the calculus: crystalline phases are detected – wevellite (calcium oxalate monohydrate СаС2О4 · Н2О) – 10 %, and uric acid – dihydrate (С5Н4О3N4 · 2 H2O) – 90%

Download (360KB)
3. Fig. 2. Uric acid calculi of the urinary bladder. a – The appearance of the calculi; b – photo of a thin section of a calculus in crossed nicols, the layered structure of the calculi is visible; c – X-ray fluorescence analysis of the calculus: the crystalline phase is detected – uric acid (C5H4N4O3) – 100%

Download (304KB)
4. Fig. 3. Phosphate calculus of the urinary bladder. a – The granular structure of the calculus; b – X-ray fluorescence analysis of the calculus: crystalline phases are revealed – struvite (MgNH4PO4 · 6 H2O) – 60% and hydroxylapatite [Са5(РО4)3ОН] – 40%

Download (296KB)
5. Fig. 4. Phosphate calculus of the urinary bladder. a – Cut of phosphate calculus: a concentric-layered structure with a zonal structure is revealed, struvite-hydroxylapatite layers are detected; b – X-ray fluorescence analysis of the stone: the crystalline phase is revealed – struvite (MgNH4PO4 · 6 H2O) – 100%

Download (265KB)
6. Fig. 5. Phosphate calculus of the urinary bladder. a – Cut of phosphate calculus: loose porous structure; b – X-ray fluorescence analysis of the calculus: crystalline phases are revealed – wevellite (calcium oxalate monohydrate СаС2О4 · Н2О) – 60% and hydroxylapatite [Са5(РО4)3ОН] – 40 %

Download (245KB)
7. Fig. 1. Uric acid calculi of the urinary bladder. a – The appearance of the calculi; b – photo of a thin section of a calculus in crossed nicols, the layered structure of the calculi is visible; c – X-ray fluorescence analysis of the calculus: crystalline phases are detected – wevellite (calcium oxalate monohydrate СаС2О4 · Н2О) – 10%, and uric acid – dihydrate (С5Н4О3N4 · 2 H2O) – 90%

Download (245KB)
8. Fig. 2. Uric acid calculi of the urinary bladder. a – The appearance of the calculi; b – photo of a thin section of a calculus in crossed nicols, the layered structure of the calculi is visible; c – X-ray fluorescence analysis of the calculus: the crystalline phase is detected – uric acid (C5H4N4O3) – 100%

Download (212KB)
9. Fig. 3. Phosphate calculus of the urinary bladder. a – The granular structure of the calculus; b – X-ray fluorescence analysis of the calculus: crystalline phases are revealed – struvite (MgNH4PO4 · 6 H2O) – 60% and hydroxylapatite [Са5(РО4)3ОН] – 40%

Download (214KB)
10. Fig. 4. Phosphate calculus of the urinary bladder. a – Cut of phosphate calculus: a concentric-layered structure with a zonal structure is revealed, struvite-hydroxylapatite layers are detected; b – X-ray fluorescence analysis of the stone: the crystalline phase is revealed – struvite (MgNH4PO4 · 6 H2O) – 100%

Download (178KB)
11. Fig. 5. Phosphate calculus of the urinary bladder. a – Cut of phosphate calculus: loose porous structure; b – X-ray fluorescence analysis of the calculus: crystalline phases are revealed – wevellite (calcium oxalate monohydrate СаС2О4 · Н2О) – 60% and hydroxylapatite [Са5(РО4)3ОН] – 40%

Download (175KB)

Copyright (c) 2021 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».