Anatomical, physiological and pathophysiological features of the lower urinary tract in gender and age aspects

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the review article, based on the results of modern clinical and experimental studies, gender and age-related features of the anatomy, physiology and pathophysiology of the lower urinary tract are considered. The features of the structure and functioning of the urothelium, myothelium, neurothelium and endothelium of the lower urinary tract in men and women are described in detail. A separate section of the review is devoted to the peculiarities of hormonal regulation of the lower urinary tract, depending on gender and age.

About the authors

Igor S. Shormanov

Yaroslavl State Medical University

Author for correspondence.
Email: i-s-shormanov@yandex.ru
ORCID iD: 0000-0002-2062-0421
SPIN-code: 7772-8420
Scopus Author ID: 6507085029

Dr. Sci. (Med.), Professor, Head of the Department of Urology and Nephrology

Russian Federation, 5, Revolyutsionnaya str., 150000, Yaroslavl

Andrey S. Solovyov

Yaroslavl State Medical University

Email: a-s-soloviev89@yandex.ru
ORCID iD: 0000-0001-5612-3227

Сand. Sci. (Med.)

Russian Federation, 5, Revolyutsionnaya str., 150000, Yaroslavl

Igor A. Tyuzikov

Medical Center “Tandem-Plus”

Email: phoenix-67@list.ru
ORCID iD: 0000-0001-6316-9020
SPIN-code: 3026-1218

Cand. Sci. (Med.), urologist

Russian Federation, Yaroslavl

Sergey V. Kulikov

Yaroslavl State Medical University

Email: kulikov268@yandex.ru
ORCID iD: 0000-0002-3331-8555
SPIN-code: 8894-6060

Dr. Sci. (Med.), Associate Professor

Russian Federation, 5, Revolyutsionnaya str., 150000, Yaroslavl

References

  1. Miller VM. Why are sex and gender important to basic physiology and translational and individualized medicine? Am J Physiol Heart Circ Physiol. 2014;306(6): H781–H788. doi: 10.1152/ajpheart.00994.2013
  2. Institute of Medicine. Exploring the biological contributions to human health: does sex matter? Washington, DC: The National Academies Press; 2001. Available from: https://www.nap.edu/read/10028/chapter/1
  3. Collins FS, Tabak LA. Policy: NIH plans to enhance reproducibility. Nature. 2014;505(7485):612–613. doi: 10.1038/505612a
  4. Losada L, Amundsen CL, Ashton-Miller J, et al. Expert panel recommendations on lower urinary tract health of women across their life span. J Women’s Health (Larchmt). 2016;25(11):1086–1096. doi: 10.1089/jwh.2016.5895
  5. Clayton JA, Collins FS. Policy: NIH to balance sex in cell and animal studies. Nature. 2014;509(7500):282–283. doi: 10.1038/509282a
  6. Abelson B, Sun D, Que L, et al. Sex differences in lower urinary tract biology and physiology. Biol Sex Differences. 2018;9(1):45–58. doi: 10.1186/s13293-018-0204-8
  7. Parsons CL. The role of the urinary epithelium in the pathogenesis of interstitial cystitis / prostatitis / urethritis. Urol. 2007;69(4): 9–16. doi: 10.1016/j.urology.2006.03.084
  8. Russo GI, Castelli T, Urzì D, et al. Emerging links between non-neurogenic lower urinary tract symptoms secondary to benign prostatic obstruction, metabolic syndrome and its components: A systematic review. Int J Urol. 2015;22(11):982–990. doi: 10.1111/iju.12877
  9. Matthews CA. Risk factors for urinary, fecal, or double incontinence in women. Curr Opin Obstet Gynecol. 2014;26(5):393–397. doi: 10.1097/GCO.0000000000000094
  10. Birder LA, de Groat WC. Mechanisms of disease: involvement of the urothelium in bladder dysfunction. Nat Clin Pract Urol. 2007;4(1):46–54. doi: 10.1038/ncpuro0672
  11. Tyuzikov IA, Kalinchenko SYu. Endocrinological aspects of chronic cystitis in women. Experimental and Clinical Urology. 2016;(3):120–126.
  12. Fry CH, Bayliss M, Young JS, Hussain M. Influence of age and bladder dysfunction on the contractile properties of isolated human detrusor smooth muscle. BJU Int. 2011;108(2): E91–E96. doi: 10.1111/j.1464-410X.2010.09845.x
  13. Khandelwal P, Abraham SN, Apodaca G. Cell biology and physiology of the uroepithelium. Am J Physiol Ren Physiol. 2009;297(6): F1477–1501. doi: 10.1152/ajprenal.00327.2009
  14. Walz T, Haner M, Wu XR, et al. Towards the molecular architecture of the asymmetric unit membrane of the mammalian urinary bladder epithelium: a closed “twisted ribbon” structure. J Mol Biol. 1995;248(5):887–900. doi: 10.1006/jmbi.1995.0269
  15. Lin JH, Wu XR, Kreibich G, Sun TT. Precursor sequence, processing, and urothelium-specific expression of a major 15-kDa protein subunit of asymmetric unit membrane. J Biol Chem. 1994;269(3):1775–1784.
  16. Wu XR, Sun TT. Molecular cloning of a 47 kDa tissue-specific and differentiation dependent urothelial cell surface glycoprotein. J Cell Sci. 1993;106(Pt 1):31–43.
  17. Yu J, Lin JH, Wu XR, Sun TT. Uroplakins Ia and Ib, two major differentiation products of bladder epithelium, belong to a family of four transmembrane domain (4TM) proteins. J Cell Biol. 1994;125:171–182. doi: 10.1083/jcb.125.1.171
  18. Hu P, Meyers S, Liang FX, et al. Role of membrane proteins in permeability barrier function: uroplakin ablation elevates urothelial permeability. Am J Physiol Ren Physiol. 2002;283(6): F1200–1207. doi: 10.1152/ajprenal.00043.2002
  19. Aboushwareb T, Zhou G, Deng FM, et al. Alterations in bladder function associated with urothelial defects in uroplakin II and IIIa knockout mice. Neurourol Urodyn. 2009;28(8):1028–1033. doi: 10.1002/nau.20688
  20. Apodaca G, Balestreire E, Birder LA. The uroepithelial-associated sensory web. Kidney Int. 2007;72(9):1057–1064. doi: 10.1038/sj.ki.5002439
  21. Birder LA. Urothelial signaling. Handb Exp Pharmacol. 2011;(202):207–231. doi: 10.1007/978-3-642-16499-6_10
  22. Kobayashi H, Yoshiyama M, Zakoji H, Takeda M, Araki I. Sex differences in the expression profile of acid-sensing ion channels in the mouse urinary bladder: a possible involvement in irritative bladder symptoms. BJU Int. 2009;104(11):1746–1751. doi: 10.1111/j.1464-410X.2009.08658.x
  23. Page AJ, Brierley SM, Martin CM, et al. Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function. Gut. 2005;54(10):1408–1415. doi: 10.1136/gut.2005.071084
  24. Luthje P, Brauner H, Ramos NL, et al. Estrogen supports urothelial defense mechanisms. Sci Transl Med. 2013;5(190):190ra180. doi: 10.1126/scitranslmed.3005574
  25. Wang C, Symington JW, Ma E, et al. Estrogenic modulation of uropathogenic Escherichia coli infection pathogenesis in a murine menopause model. Infect Immun. 2013;81(3):733–739. doi: 10.1128/IAI.01234-12
  26. Tincello DG, Taylor AH, Spurling SM, Bell SC. Receptor isoforms that mediate estrogen and progestagen action in the female lower urinary tract. J Urol. 2009;181(3):1474–1482. doi: 10.1016/j.juro.2008.10.104
  27. Lu M, Li JR, Alvarez-Lugo L, et al. Lipopolysaccharide stimulates BK channel activity in bladder umbrella cells. Am J Phys Cell Physiol. 2018;314(6):643–653. doi: 10.1152/ajpcell.00339.2017
  28. Papavlassopoulos M, Stamme C, Thon L, et al. MaxiK blockade selectively inhibits the lipopolysaccharide-induced I kappa B-alpha / NF-kappa B signaling pathway in macrophages. J Immunol. 2006;177(6):4086–4093. doi: 10.4049/jimmunol.177.6.4086
  29. Acevedo-Alvarez M, Yeh J, Alvarez-Lugo L, et al. Mouse urothelial genes associated with voiding behavior changes after ovariectomy and bladder lipopolysaccharide exposure. Neurourol Urodyn. 2018;37(8):2398–2405. doi: 10.1002/nau.23592
  30. Andersson KE, Arner A. Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev. 2004;84(3): 935–986. doi: 10.1152/physrev.00038.2003
  31. DeLancey J, Gosling J, Creed K, et al. Gross anatomy and cell biology of the lower urinary tract. In: Abrams P, Cardozo L, Khoury S, Wein A, editors. Second international consultation on incontinence. Plymouth: Health Publication; 2002. P. 17–82.
  32. Mangera A, Osman NI, Chapple CR. Anatomy of the lower urinary tract. Surgery (Oxford). 2013;31(7):319–325. doi: 10.1016/j.mpsur.2010.03.002
  33. Lepor H, Machi G. Comparison of AUA symptom index in unselected males and females between fifty-five and seventy-nine years of age. Urology. 1993;42:36–40. doi: 10.1016/0090-4295(93)90332-5
  34. Tanaka ST, Ishii K, Demarco RT, et al. Endodermal origin of bladder trigone inferred from mesenchymal-epithelial interaction. J Urol. 2010;183:386–391. doi: 10.1016/j.juro.2009.08.107
  35. Favorito LA, Pazos HM, Costa SF, et al. Morphology of the fetal bladder during the second trimester: comparing genders. J Pediatr Urol. 2014;10(6):1014–1019. doi: 10.1016/j.jpurol.2014.11.006
  36. Baggish MS, Karram MM. Atlas of Pelvic Anatomy and Gynecologic Surgery. Philadelphia: Elsevier / Saunders; 2011.
  37. Morita T, Latifpour J, O’Hollaren B, et al. Sex differences in function and distribution of alpha 1- and alpha 2-adrenoceptors in rabbit urethra. Am J Phys. 1987;252(6 pt 2): F1124–1128. doi: 10.1152/ajprenal.1987.252.6.F1124
  38. Alexandre EC, de Oliveira MG, Campos R, et al. How important is the alpha1-adrenoceptor in primate and rodent proximal urethra? Sex differences in the contribution of alpha1-adrenoceptor to urethral contractility. Am J Physiol Ren Physiol. 2017;312(6): F1026–1034. doi: 10.1152/ajprenal.00013.2017
  39. Oswald J, Heidegger I, Steiner E, et al. Gender-related fetal development of the internal urethral sphincter. Urology. 2013;82(6):1410–1415. doi: 10.1016/j.urology.2013.03.096
  40. Jin ZW, Abe H, Hinata N, et al. Descent of mesonephric duct to the final position of the vas deferens in human embryo and fetus. Anat Cell Biol. 2016;49(4):231–240. doi: 10.5115/acb.2016.49.4.231
  41. Downing K. Chapter Eight. Biochemistry and ultrastructure of pelvic floor tissues and organs. In: Hoyte L, Damaster M, editors. Biomechanics of the female pelvic floor. 1st edition. Elsevier; 2016. P. 181–208. doi: 10.1016/B978-0-12-803228-2.00008-8
  42. Frontera WR, Ochala J. Skeletal muscle: a brief review of structure and function. Calcif Tissue Int. 2015;96(3):183–195. doi: 10.1007/s00223-014-9915-y
  43. Dixon J, Gosling J. Structure and innervation in the human. In: The physiology of the lower urinary tract. London: Springer; 1987. P. 3–22.
  44. Gosling JA, Dixon JS, Critchley HO, Thompson SA. A comparative study of the human external sphincter and periurethral levator ani muscles. Br J Urol. 1981;53(1):35–41. doi: 10.1111/j.1464-410x.1981.tb03125.x
  45. Praud C, Sebe P, Mondet F, Sebille A. The striated urethral sphincter in female rats. Anat Embryol (Berl). 2003;207(2):169–175. doi: 10.1007/s00429-003-0340-7
  46. Lim SH, Wang TJ, Tseng GF, et al. The distribution of muscles fibers and their types in the female rat urethra: cytoarchitecture and three-dimensional reconstruction. Anat Rec (Hoboken). 2013;296(10):1640–1649. doi: 10.1002/ar.22740
  47. Bierinx AS, Sebille A. The urethral striated sphincter in adult male rat. Anat Embryol (Berl). 2006;211(5):435–441. doi: 10.1007/s00429-006-0093-1
  48. Buffini M, O’Halloran KD, O’Herlihy C, et al. Comparison of the contractile properties, oxidative capacities and fibre type profiles of the voluntary sphincters of continence in the rat. J Anat. 2010;217(3):187–195. doi: 10.1111/j.1469-7580.2010.01263.x
  49. Chen SL, Wu M, Henderson JP, et al. Genomic diversity and fitness of E. coli strains recovered from the intestinal and urinary tracts of women with recurrent urinary tract infection. Sci Transl Med. 2013;5(184):184ra160. doi: 10.1126/scitranslmed.3005497
  50. Benoit G, Quillard J, Jardin A. Anatomical study of the infra-montanal urethra in man. J Urol. 1988;139(4):866–868. doi: 10.1016/s0022-5347(17)42664-4
  51. Brading AF. The physiology of the mammalian urinary outflow tract. Exp Physiol. 1999;84(1):215–21.
  52. Brading AF. The physiology of the mammalian urinary outflow tract. Exp Physiol. 1999;84:215–21. doi: 10.1111/j.1469-445x.1999.tb00084.x
  53. Ho KM, McMurray G, Brading AF, et al. Nitric oxide synthase in the heterogeneous population of intramural striated muscle fibres of the human membranous urethral sphincter. J Urol. 1998;159: 1091–1096.
  54. Tokunaka S, Okamura K, Fujii H, Yachiku S. The proportions of fiber types in human external urethral sphincter: electrophoretic analysis of myosin. Urol Res. 1990;18(5):341–344. doi: 10.1007/BF00300784
  55. Bridgewater M, MacNeil HF, Brading AF. Regulation of tone in pig urethral smooth muscle. J Urol. 1993;150(1):223–228. doi: 10.1016/s0022-5347(17)35451-4
  56. Persson K, Andersson KE. Non-adrenergic, non-cholinergic relaxation and levels of cyclic nucleotides in rabbit lower urinary tract. Eur J Pharmacol. 1994;268(2):159–167. doi: 10.1016/0922-4106(94)90185-6
  57. Persson K, Igawa Y, Mattiasson A, Andersson KE. Effects of inhibition of the L-arginine/nitric oxide pathway in the rat lower urinary tract in vivo and in vitro. Br J Pharmacol. 1992;107(1):178–184. doi: 10.1111/j.1476-5381.1992.tb14483.x
  58. Livingston BP. Anatomy and neural control of the lower urinary tract and pelvic floor. Top Geriatr Rehabil. 2016;32(4):280–294. doi: 10.1097/TGR.0000000000000123
  59. Hull T, Zutshi M. Chapter 78. Pathophysiology, diagnosis, and treatment of defecatory dysfunction. In: Female urology. 3rd ed. Philadelphia: Elsevier; 2008. P. 761–72. doi: 10.1016/B978-1-4160-2339-5.50127-0
  60. Koelbl H, Strassegger H, Riss PA, Gruber H. Morphologic and functional aspects of pelvic floor muscles in patients with pelvic relaxation and genuine stress incontinence. Obstet Gynecol. 1989;74(5):789–795.
  61. Jundt K, Kiening M, Fischer P, et al. Is the histomorphological concept of the female pelvic floor and its changes due to age and vaginal delivery correct? Neurourol Urodyn. 2005;24(1):44–50. doi: 10.1002/nau.20080
  62. Tobin C, Joubert Y. Testosterone-induced development of the rat levatorani muscle. Dev Biol. 1991;146(1):131–138. doi: 10.1016/0012-1606(91)90453-a
  63. Niel L, Willemsen KR, Volante SN, Monks DA. Sexual dimorphism and androgen regulation of satellite cell population in differentiating rat levator ani muscle. Dev Neurobiol. 2008;68(1):115–122. doi: 10.1002/dneu.20580
  64. Fritsch H, Frohlich B. Development of the levator ani muscle in human fetuses. Early Hum Dev. 1994;37(1):15–25. doi: 10.1016/0378-3782(94)90143-0
  65. Anderson TJ, Charbonneau F, Title LM, et al. Microvascular function predicts cardiovascular events in primary prevention: long-term results from the Firefighters and Their Endothelium (FATE) study. Circulation. 2011;123(2):163–169. doi: 10.1161/CIRCULATIONAHA.110.953653
  66. Taddei S, Virdis A, Ghiadoni L, et al. Menopause is associated with endothelial dysfunction in women. Hypertension. 1996;28(4):576–582. doi: 10.1161/01.hyp.28.4.576
  67. Robinson D, Toozs-Hobson P, Cardozo L. The effect of hormones on the lower urinary tract. Menopause Int. 2013;19(4):155–162. doi: 10.1177/1754045313511398
  68. Somani YB, Pawelczyk JA, De Souza MJ, et al. Aging women and their endothelium: Probing the relative role of estrogen on vasodilator function. Am J Physiol Heart Circ Physiol. 2019;317(2): H395–H404. doi: 10.1152/ajpheart.00430.2018
  69. Van Geelen JM, Doesburg WH, Thomas CM, Martin CB Jr. Urodynamic studies in the normal menstrual cycle: the relationship between hormonal changes during the menstrual cycle and the urethral pressure profile. Am J Obstet Gynecol. 1981;141(4):384–392. doi: 10.1016/0002-9378(81)90599-8
  70. Ansari MA, Begum D, Islam F. Serum sex steroids, gonadotrophins and sex hormonebinding globulin in prostatic hyperplasia. Ann Saudi Med. 2008;28(3):174–178. doi: 10.5144/0256-4947.2008.174
  71. Ito S, Juncos LA, Nushiro N., et al. Endothelium-derived relaxing factor modulates endothelin action in aggerent arterioles. Hypertension. 1991;17(6 Pt. 2):1052–1056. doi: 10.1161/01.hyp.17.6.1052
  72. Tyuzikov IA. Pathogenetic Mechanisms of Influence of Testosterone Deficiency on Lower Urinary Tract Symptoms in Men. Jeffektivnaja Farmakoterapija. 2020;16(20):32–42. doi: 10.33978/2307-3586-2020-16-20-32-42
  73. Riding DM, Hansrani V, McCollum C. Pelvic vein incompetence: clinical perspectives. Vasc Health Risk Manag. 2017;13:439–447. doi: 10.2147/VHRM.S132827
  74. Shigehara K, Namiki M. Late-onset hypogonadism syndrome and lower urinary tract symptoms. Korean J Urol. 2011;52(10): 657–663. doi: 10.4111/kju.2011.52.10.657
  75. Gacci M, Corona G, Sebastianelli A, et al. Male Lower Urinary Tract Symptoms and Cardiovascular Events: A Systematic Review and Meta-analysis. Eur Urol. 2016;70(5):788–796. doi: 10.1016/j.eururo.2016.07.007
  76. Semczuk-Kaczmarek K, Płatek AE, Filip M. Szymański FM. Co-treatment of lower urinary tract symptoms and cardiovascular disease — where do we stand? Cent European J Urol. 2020;73(1): 42–45. doi: 10.5173/ceju.2020.0029
  77. Sorge RE, Totsch SK. Sex Differences in Pain. J Neurosci Res. 2017;95(6):1271–1281. doi: 10.1002/jnr.23841
  78. Li J, Baccei ML. Functional Organization of Cutaneous and Muscle Afferent Synapses onto Immature Spinal Lamina I Projection Neurons. J Neurosci. 2017;37(6):1505–1517. doi: 10.1523/JNEUROSCI.3164-16.2016
  79. Bueno CH, Pereira DD, Pattussi MP, et al. Gender differences in temporomandibular disorders in adult populational studies: A systematic review and meta-analysis. J Oral Rehabil. 2018;45(9): 720–729. doi: 10.1111/joor.12661
  80. Mogil JS. Sex differences in pain and pain inhibition: multiple explanations of a controversial phenomenon. Nat Rev Neurosci. 2012;13(12):859–866. doi: 10.1038/nrn3360
  81. Rovner GS, Sunnerhagen KS, Bjorkdahl A, et al. Chronic pain and sex-differences; women accept and move, while men feel blue. PLoS One. 2017;12(4): e0175737. doi: 10.1371/journal.pone.0175737
  82. Martin LJ, Acland EL, Cho C, et al. Male-Specific Conditioned Pain Hypersensitivity in Mice and Humans. Current Biol. 2019;29(2):192–201. doi: 10.1016/j.cub.2018.11.030
  83. Dannecker EA, Liu Y, Rector RS, et al. Sex differences in exercise-induced muscle pain and muscle damage. J Pain. 2012;13(12):1242–1249. doi: 10.1016/j.jpain.2012.09.014
  84. Arendt-Nielsen L, Sluka KA, Nie HL. Experimental muscle pain impairs descending inhibition. Pain. 2008;140(3):465–471. doi: 10.1016/j.pain.2008.09.027
  85. Wegner A, Elsenbruch S, Rebernik L, et al. Inflammation-induced pain sensitization in men and women: does sex matter in experimental endotoxemia? Pain. 2015;156(10):1954–1964. doi: 10.1097/j.pain.0000000000000256
  86. Monroe TB, Fillingim RB, Bruehl SP, et al. Sex Differences in Brain Regions Modulating Pain Among Older Adults: A Cross-Sectional Resting State Functional Connectivity Study. Pain Medicine. 2018;19(9):1737–1747. doi: 10.1093/pm/pnx084
  87. Gupta A, Mayer EA, Fling C, et al. Sex-based differences in brain alterations across chronic pain conditions. Journal of Neuroscience Research. 2017;95(1–2):604–616. doi: 10.1002/jnr.23856
  88. Henderson LA, Gandevia SC, Macefield VG. Gender differences in brain activity evoked by muscle and cutaneous pain: a retrospective study of single-trial fMRI data. Neuroimage. 2008;39(4): 1867–1876. doi: 10.1016/j.neuroimage.2007.10.045
  89. Queme LF, Jankowski MP. Sex differences and mechanisms of muscle pain. Curr Opin Physiol. 2019;11:1–6. doi: 10.1016/j.cophys.2019.03.006
  90. Blakeman PJ, Hilton P, Bulmer JN. Oestrogen and progesterone receptor expression in the female lower urinary tract, with reference to oestrogen status. BJU Int. 2000;86(1):32–38. doi: 10.1046/j.1464-410x.2000.00724.x
  91. Celayir S. Is there a “bladder sex”? The relation of different sex hormones and sex hormone receptors in bladder in childhood. Med Hypotheses. 2002;59(2):186–190. doi: 10.1016/s0306-9877(02)00245-1
  92. Keast JR, Saunders RJ. Testosterone has potent, selective effects on the morphology of pelvic autonomic neurons which control the bladder, lower bowel and internal reproductive organs of the male rat. Neuroscience. 1998;85(2):543–556. doi: 10.1016/s0306-4522(97)00631-3
  93. Makela S, Strauss L, Kuiper G, et al. Differential expression of estrogen receptors alpha and beta in adult rat accessory sex glands and lower urinary tract. Mol Cell Endocrinol. 2000;170(1–2):219–229. doi: 10.1016/s0303-7207(00)00441-x
  94. McKenna KE, Nadelhaft I. The organization of the pudendal nerve in the male and female rat. J Comp Neurol. 1986;248(4): 532–549. doi: 10.1002/cne.902480406
  95. Savolainen S, Santti R, Streng T, et al. Sex specific expression of progesterone receptor in mouse lower urinary tract. Mol Cell Endocrinol. 2005;230(1–2):17–21. doi: 10.1016/j.mce.2004.11.008
  96. Tincello DG, Taylor AH, Spurling SM, Bell SC. Receptor isoforms that mediate estrogen and progestagen action in the female lower urinary tract. J Urol. 2009;181(3):1474–1482. doi: 10.1016/j.juro.2008.10.104
  97. Bødker A, Balslev E, Juul BR, et al. Estrogen receptors in the human male bladder, prostatic urethra, and prostate: an immunohistochemical and biochemical study. Scand J Urol Nephrol. 1995;29(2):161–165. doi: 10.3109/00365599509180557
  98. Celayir S. Effects of different sex hormones on male rabbit urodynamics: an experimental study. Horm Res. 2003;60(5):215–220. doi: 10.1159/000074034
  99. Rohrmann S, Nelson WG, Rifai N. Serum sex steroid hormones and lower urinary tract symptoms in Third National Health and Nutrition Examination Survey (NHANES III) Urol. 2007;69(4):708–713. doi: 10.1016/j.urology.2007.01.011
  100. Navarro-Dorado J, Orensanz LM, Recio P. Mechanisms involved in testosterone-induced vasodilatation in pig prostatic small arteries. Life Sci. 2008;83(15–16):569–573. doi: 10.1016/j.lfs.2008.08.009
  101. Mitterberger M, Pallwein L, Gradl J, et al. Persistent detrusor overactivity after transurethral resection of the prostate is associated with reduced perfusion of the urinary bladder. BJU Int. 2007;99(4):831–835. doi: 10.1111/j.1464-410X.2006.06735.x
  102. McVary KT. Erectile dysfunction and lower urinary tract symptoms secondary to BPH. Eur Urol. 2005;47(6):838–845. doi: 10.1016/j.eururo.2005.02.001
  103. Azadzoi KM, Tarcan T, Kozlowski R, et al. Overactivity and structural changes in the chronically ischemic bladder. J Urol. 1999;162(5):1768–1778.
  104. Zhang Y, Chen J, Hu L, Chen Z. Androgen deprivation induces bladder histological abnormalities and dysfunction via TGF-β in orchiectomized mature rats. Tohoku J Exp Med. 2012;226(2):121–128. doi: 10.1620/tjem.226.121

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. A hypothetical model of interactions between urothelial cells (urothelium), afferent and efferent nerve endings (neurothelium), vessels (endothelium), smooth muscle cells and myofibroblasts of the lower urinary tract [10, 11]. NO – nitrogen oxide; AдР – adrenergic receptor; ATФ – adenosine triphosphate; AЦХ – acetylcholine; Бр – bradykinin receptor; ГКД – detrusor smooth muscle cell; МР – muscarinic receptor; НикР – nicotinic receptor; HP – neurokinin receptor; НЭ – norepinephrine; П2Р – purinergic receptor subtype 2; П2X and П2Y – purinergic receptors of the X and Y subtypes; ПГ – prostaglandins; СП – substance R; ТирКР – tyrosine kinase receptor with high affinity for nerve growth factor; TРПК – transit receptor of potential channels; ФРН – nerve growth factor

Download (354KB)
3. Fig. 2. Scheme of the relationship between endothelial dysfunction and lower urinary tract dysfunction in men [76]

Download (123KB)
4. Fig. 3. Gender characteristics of the pathogenesis of muscle pain [89]. TRPV1 – transient receptor potential of vanilloid type 1; P2X3 – type 3 adenosine receptor; Р2Х5 – type 5 adenosine receptor; ASIC3 – type 3 acid-sensitive ion channel

Download (210KB)

Copyright (c) 2021 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».