Modern aspects of the development and application of drug-eluting ureteral stents: from experimental models to clinical practice
- Authors: Mosyagina N.A.1, Kuzmina A.V.2, Gatsalova K.A.2, Gatsalov R.E.2, Dzhumaev M.M.2, Dolaev R.R.2, Dzhalivov R.I.2, Abukov I.A.2, Abdullaeva A.R.2, Gevorkyan A.S.2, Semkin N.L.2, Surzhenko N.S.2, Musaeva G.T.2, Yepez Vera M.M.3
-
Affiliations:
- Lugansk State Medical University named after Saint Luke
- Rostov State Medical University
- N.I. Pirogov Russian National Research Medical University
- Issue: Vol 15, No 4 (2025)
- Pages: 439-454
- Section: Reviews
- URL: https://bakhtiniada.ru/uroved/article/view/381661
- DOI: https://doi.org/10.17816/uroved693243
- EDN: https://elibrary.ru/DZGPIC
- ID: 381661
Cite item
Abstract
Ureteral stents are widely used in urological practice to restore urinary tract patency in cases of obstruction of various etiologies. However, their use is frequently associated with complications, including urinary tract infections, biofilm formation, encrustation, inflammation, and patient discomfort. Contemporary research is focused on the development of next-generation drug-eluting stents capable of providing localized and sustained release of pharmacologically active agents. This review systematizes current data on modern types of drug-eluting stents used in urology, including those incorporating antibacterial, anti-inflammatory, and antineoplastic agents, and analyzes their effectiveness and limitations. Results of experimental and clinical studies demonstrating the potential of controlled drug-release stents to reduce the risk of infection, hyperplasia, and ureteral strictures are presented. Issues of biocompatibility, material degradation, drug resistance, and future prospects for the implementation of biodegradable and smart stents based on nanotechnology and 3D printing are discussed. The development of such stent designs may substantially improve the efficacy and safety of stenting, enhance patients’ quality of life, and establish a new direction in minimally invasive urologic therapy.
About the authors
Nadezhda A. Mosyagina
Lugansk State Medical University named after Saint Luke
Author for correspondence.
Email: rrstr1990@mail.ru
ORCID iD: 0000-0001-9176-8549
SPIN-code: 8766-2689
MD
Russian Federation, LuganskAnastasia V. Kuzmina
Rostov State Medical University
Email: anastasia.kuzmina542@gmail.com
ORCID iD: 0009-0000-0452-9970
Russian Federation, Rostov-on-Don
Kristina A. Gatsalova
Rostov State Medical University
Email: qcrsss@mail.ru
ORCID iD: 0009-0003-6050-7903
Russian Federation, Rostov-on-Don
Ruslan E. Gatsalov
Rostov State Medical University
Email: gatsalov_r@mail.ru
ORCID iD: 0009-0002-6124-655X
Russian Federation, Rostov-on-Don
Muslim M. Dzhumaev
Rostov State Medical University
Email: real2_iphone7@icloud.com
ORCID iD: 0009-0000-8235-0589
Russian Federation, Rostov-on-Don
Ramil R. Dolaev
Rostov State Medical University
Email: ramil.dolaev1234@gmail.com
ORCID iD: 0009-0008-0956-6592
Russian Federation, Rostov-on-Don
Rustam I. Dzhalivov
Rostov State Medical University
Email: rustam.dzhalivov@bk.ru
ORCID iD: 0009-0008-6094-2485
Russian Federation, Rostov-on-Don
Islam A. Abukov
Rostov State Medical University
Email: islamabukov3@mail.ru
ORCID iD: 0009-0007-5382-3456
Russian Federation, Rostov-on-Don
Arina R. Abdullaeva
Rostov State Medical University
Email: Abdullaeva_arina1@mail.ru
ORCID iD: 0009-0003-4667-3702
Russian Federation, Rostov-on-Don
Asmik S. Gevorkyan
Rostov State Medical University
Email: asmikbabajan@yandex.ru
ORCID iD: 0009-0003-1882-7129
Russian Federation, Rostov-on-Don
Nikita L. Semkin
Rostov State Medical University
Email: sjomk1n@mail.ru
ORCID iD: 0009-0004-8592-4428
Russian Federation, Rostov-on-Don
Natalia S. Surzhenko
Rostov State Medical University
Email: Kakokha.natasha@bk.ru
ORCID iD: 0009-0006-4107-848X
Russian Federation, Rostov-on-Don
Gyulnaz T. Musaeva
Rostov State Medical University
Email: GMusaeva2002@mail.ru
ORCID iD: 0009-0005-5603-2604
Russian Federation, Rostov-on-Don
Milagros Mayely Yepez Vera
N.I. Pirogov Russian National Research Medical University
Email: myv262709@gmail.com
ORCID iD: 0009-0005-8798-2370
Russian Federation, Moscow
References
- Lange D, Bidnur S, Hoag N, et al. Ureteral stent-associated complications — where we are and where we are going. Nat Rev Urol. 2015;12(1): 17–25. doi: 10.1038/nrurol.2014.340
- Kochkin AD. Intraoperative JJ-stent placement during laparoscopic procedure. Urology Herald. 2020;8(2):119–123. doi: 10.21886/2308-6424-2020-8-2-119-123 EDN: LPHRJH
- Rotariu P, Yohannes P, Alexianu M, et al. Management of malignant extrinsic compression of the ureter by simultaneous placement of two ipsilateral ureteral stents. J Endourol. 2001;15(10):979–983. doi: 10.1089/089277901317203047
- Sergeev VV, Medvedev VL, Gabriel SA, et al. “Forgotten” encrusted ureteral stents, combined endourological approach. Innovative Medicine of Kuban. 2024;(1):78–85. doi: 10.35401/2541-9897-2024-9-1-78-85 EDN: FHWYPH
- Venkatesan N, Shroff S, Jayachandran K, Doble M. Polymers as ureteral stents. J Endourol. 2010;24(2):191–198. doi: 10.1089/end.2009.0516
- Chew BH, Lange D. Ureteral stent symptoms and associated infections: a biomaterials perspective. Nat Rev Urol. 2009;6(8):440–448. doi: 10.1038/nrurol.2009.127
- Rao MV, Polcari AJ, Turk TMT. Updates on the use of ureteral stents: focus on the Resonance stent. Med Devices (Auckl). 2011;4:11–15. doi: 10.2147/MDER.S11744
- Pérez-Fentes D, Aranda-Pérez J, de la Cruz JE, et al. Indications, complications and side effects of ureteral stents. In: Urinary Stents: Current State and Future Perspectives. Cham: Springer; 2022. P. 5–20. doi: 10.1007/978-3-031-04484-7_2
- Herdman JP. Polythene tubing in the experimental surgery of the ureter. Br J Surg. 1949;37(145):105–106. doi: 10.1002/bjs.18003714520
- Khoo CC, Ho C, Palaniappan V, et al. Single-center experience with three metallic ureteral stents (Allium URS, Memokath-051, and Resonance) for chronic ureteral obstruction. J Endourol. 2021;35(12):1829–1837. doi: 10.1089/end.2021.0208 EDN: NAENGC
- Aloyan AA, Gorgotsky IA, Korbina NS, et al. Bioabsorbable ureteral stents: current state-of-the-art. Urology Herald. 2024;12(2):76–86. doi: 10.21886/2308-6424-2024-12-2-76-86 EDN: JQFYFY
- Rao MV, Polcari AJ, Turk TM. Updates on the use of ureteral stents: focus on the Resonance® stent. Med Devices (Auckl). 2011;4:11–15. doi: 10.2147/MDER.S11744
- Kadlec AO, Ellimoottil CS, Greco KA, et al. Five-year experience with metallic stents for chronic ureteral obstruction. J Urol. 2013;190(3):937–941. doi: 10.1016/j.juro.2013.02.070
- Hendlin K, Korman E, Monga M. New metallic ureteral stents: improved tensile strength and resistance to extrinsic compression. J Endourol. 2012;26(3):271–274. doi: 10.1089/end.2011.0332
- Christman MS, James O, Choe CH, et al. Analysis of ureteral stent compression force and its role in malignant obstruction. J Urol. 2009;181(1):392–396. doi: 10.1016/j.juro.2008.08.125
- Bhatt R, Vo K, Cumpanas AD, et al. Evaluation of renal function and stent durability following Resonance stent placement for benign disease. J Endourol. 2023;37(9):1049–1056. doi: 10.1089/end.2022.0822 EDN: UQHEVT
- Tian Y, Jian Z, Wang J, et al. Antimicrobial activity study of triclosan-loaded WBPU on Proteus mirabilis in vitro. Int Urol Nephrol. 2017;49(4):563–571. doi: 10.1007/s11255-017-1532-z EDN: LIBQGM
- Chew BH, Cadieux PA, Reid G, Denstedt JD. In-vitro activity of triclosan-eluting ureteral stents against common bacterial uropathogens. J Endourol. 2006;20(11):949–958. doi: 10.1089/end.2006.20.949
- Cadieux PA, Chew BH, Knudsen BE, et al. Triclosan-loaded ureteral stents decrease Proteus mirabilis 296 infection in a rabbit urinary tract infection model. J Urol. 2006;175(6):2331–2335. doi: 10.1016/S0022-5347(06)00252-7
- Jones GL, Muller C, O’Reilly M, Stickler D. Effect of triclosan on the development of bacterial biofilms by urinary tract pathogens on urinary catheters. J Antimicrob Chemother. 2006;57(2):266–272. doi: 10.1093/jac/dki447 EDN: IQRASP
- Cadieux PA, Chew BH, Nott L, et al. Use of triclosan-eluting ureteral stents in patients with long-term stents. J Endourol. 2009;23(7):1187–1194. doi: 10.1089/end.2008.0437
- Mendez-Probst CE, Goneau LW, MacDonald KW, et al. The use of triclosan eluting stents effectively reduces ureteral stent symptoms: a prospective randomized trial. BJU Int. 2012;110(5):749–754. doi: 10.1111/j.1464-410X.2011.10903.x
- Thomé I, Dagostin V, Piletti R, et al. Bactericidal low density polyethylene (LDPE) urinary catheters: microbiological characterization and effectiveness. Mater Sci Eng C. 2012;32(2):263–268. doi: 10.1016/j.msec.2011.10.027
- Fisher LE, Hook AL, Ashraf W, et al. Biomaterial modification of urinary catheters with antimicrobials to give long-term broad-spectrum antibiofilm activity. J Control Release. 2015;202:57–64. doi: 10.1016/j.jconrel.2015.01.037
- Lange D, Chew BH. Update on ureteral stent technology. Ther Adv Urol. 2009;1(3):143–148. doi: 10.1177/1756287209341306
- Shapur NK, Duvdevani M, Friedman M, et al. Sustained release varnish containing chlorhexidine for prevention of biofilm formation on urinary catheter surface: in vitro study. J Endourol. 2012;26(1):26–31. doi: 10.1089/end.2011.0140
- Segev G, Bankirer T, Steinberg D, et al. Evaluation of urinary catheters coated with sustained-release varnish of chlorhexidine in mitigating biofilm formation on urinary catheters in dogs. J Vet Intern Med. 2013;27(1):39–46. doi: 10.1111/j.1939-1676.2012.01027.x
- Zelichenko G, Steinberg D, Lorber G, et al. Prevention of initial biofilm formation on ureteral stents using a sustained releasing varnish containing chlorhexidine: in vitro study. J Endourol. 2013;27(3):333–337. doi: 10.1089/end.2012.0193
- Gefter J, Zaks B, Kirmayer D, et al. Chlorhexidine sustained-release varnishes for catheter coating—Dissolution kinetics and antibiofilm properties. Eur J Pharm Sci. 2018;112:1–7. doi: 10.1016/j.ejps.2017.10.041
- Darouiche RO, Mansouri MD, Gawande PV, Madhyastha S. Efficacy of combination of chlorhexidine and protamine sulphate against device-associated pathogens. J Antimicrob Chemother. 2008;61(3):651–657. doi: 10.1093/jac/dkn006 EDN: IQRIPF
- Gaonkar TA, Caraos L, Modak S. Efficacy of a silicone urinary catheter impregnated with chlorhexidine and triclosan against colonization with Proteus mirabilis and other uropathogens. Inf Control Hosp Epidemiol. 2007;28(5):596–598. doi: 10.1086/513449
- Rafienia M, Zarinmehr B, Poursamar SA, et al. Coated urinary catheter by PEG/PVA/gentamicin with drug delivery capability against hospital infection. Iran Polym J. 2013;22(2):75–83. doi: 10.1007/s13726-012-0105-3 EDN: BVWHGC
- Wang B, Jin T, Xu Q, et al. Direct loading and tunable release of antibiotics from polyelectrolyte multilayers to reduce bacterial adhesion and biofilm formation. Bioconjug Chem. 2016;27(5):1305–1313. doi: 10.1021/acs.bioconjchem.6b00153
- Furuya DC, da Costa SA, de Oliveira RC, et al. Fibers obtained from alginate, chitosan and hybrid used in the development of scaffolds. Mater Res. 2017;20(2):377–386. doi: 10.1590/1980-5373-mr-2016-0982
- Johnson JR, Delavari P, Azar M. Activities of a nitrofurazone-containing urinary catheter and a silver hydrogel catheter against multidrug-resistant bacteria characteristic of catheter-associated urinary tract infection. Antimicrob Agents Chemother. 1999;43(12):2990–2995. doi: 10.1128/AAC.43.12.2990
- Johnson JR, Johnston BD, Kuskowski MA, Pitout J. In vitro activity of available antimicrobial coated Foley catheters against Escherichia coli, including strains resistant to extended spectrum cephalosporins. J Urol. 2010;184(6):2572–2577. doi: 10.1016/j.juro.2010.08.008
- Johnson JR, Johnston B, Kuskowski MA. In vitro comparison of nitrofurazone- and silver alloy-coated Foley catheters for contact-dependent and diffusible inhibition of urinary tract infection-associated microorganisms. Antimicrob Agents Chemother. 2012;56(9):4969–4972. doi: 10.1128/AAC.00828-12
- Didem K, Kustimur AS, Sağiroğlu M, Kalkanci A. Evaluation of antimicrobial durability and anti-biofilm effects in urinary catheters against Enterococcus faecalis clinical isolates and reference strains. Balkan Med J. 2017;34(6):546–552. doi: 10.4274/balkanmedj.2016.1853
- Desai DG, Liao KS, Cevallos ME, Trautner BW. Silver or nitrofurazone impregnation of urinary catheters has a minimal effect on uropathogen adherence. J Urol. 2010;184(6):2565–2571. doi: 10.1016/j.juro.2010.07.035
- Menezes FG, Correa L, Medina-Pestana JO, et al. A randomized clinical trial comparing nitrofurazone-coated and uncoated urinary catheters in kidney transplant recipients: results from a pilot study. Transpl Infect Dis. 2019;21(2):e13031. doi: 10.1111/tid.13031
- Hachem R, Reitzel R, Borne A, et al. Novel antiseptic urinary catheters for prevention of urinary tract infections: correlation of in vivo and in vitro test results. Antimicrob Agents Chemother. 2009;53(12):5145–5149. doi: 10.1128/aac.00718-09
- El-Feky MA, El-Rehewy MS, Hassan MA, et al. Effect of ciprofloxacin and N-acetylcysteine on bacterial adherence and biofilm formation on ureteral stent surfaces. Pol J Microbiol. 2009;58(3):261–267.
- El-Rehewy MSK, El-Feky MA, Hassan MA, et al. In vitro efficacy of ureteral catheters impregnated with ciprofloxacin, N-acetylcysteine and their combinations on microbial adherence. Clin Med Insights Urol. 2009;3:CMU.S3367. doi: 10.4137/cmu.s3367
- Abd El-Aziz AA, El-Banna, T, Sonbol, FI, et al. Evaluation of the combination of N-acetylcysteine and/or sodium salicylate with ciprofloxacin on bacterial adhesion and biofilm formation on urinary catheters. Int Arab J Antimicrob Agents. 2012;2(1):4. doi: 10.3823/708
- Elayarajah B, Rajendran R, Venkatrajah B, et al. Prevention of biofilm formation on norfloxacin-metronidazole treated ureteral latex stents. Int J Eng Sci Technol. 2011;3(2):544–551. doi: 10.4314/ijest.v3i2.68523
- Saini H, Chhibber S, Harjai K. Antimicrobial and antifouling efficacy of urinary catheters impregnated with a combination of macrolide and fluoroquinolone antibiotics against Pseudomonas aeruginosa. Biofouling. 2016;32(5):511–522. doi: 10.1080/08927014.2016.1155564
- Saini H, Vadekeetil A, Chhibber S, Harjai K. Azithromycin-ciprofloxacin-impregnated urinary catheters avert bacterial colonization, biofilm formation, and inflammation in a murine model of foreign-body-associated urinary tract infections caused by Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2017;61(3):e01906–16. doi: 10.1128/aac.01906-16
- Wang X, Cai Y, Xing H, et al. Increased therapeutic efficacy of combination of azithromycin and ceftazidime on Pseudomonas aeruginosa biofilm in an animal model of ureteral stent infection. BMC Microbiol. 2016;16:126. doi: 10.1186/s12866-016-0744-1 EDN: GLAUHK
- Minardi D, Cirioni O, Ghiselli R, et al. Efficacy of tigecycline and rifampin alone and in combination against Enterococcus faecalis biofilm infection in a rat model of ureteral stent. J Surg Res. 2012;176(1):1–6. doi: 10.1016/j.jss.2011.07.034
- Cirioni O, Ghiselli R, Silvestri C, et al. Effect of the combination of clarithromycin and amikacin on Pseudomonas aeruginosa biofilm in an animal model of ureteral stent infection. J Antimicrob Chemother. 2011;66(6):1318–1323. doi: 10.1093/jac/dkr107
- John T, Rajpurkar A, Smith G, et al. Antibiotic pretreatment of hydrogel ureteral stent. J Endourol. 2007;21(10):1211–1216. doi: 10.1089/end.2007.9904
- Ma X, Xiao Y, Xu H, et al. Preparation, degradation and in vitro release of ciprofloxacin-eluting ureteral stents for potential antibacterial application. Mater Sci Eng C. 2016;66:92–99. doi: 10.1016/j.msec.2016.04.072
- Rajendran R, Sreekumar S, Sudhakar A. Biodegradable tocopherol acetate as a drug carrier to prevent ureteral stent-associated infection. Pak J Biol Sci. 2011;14(5):336–343. doi: 10.3923/pjbs.2011.336.343
- Cirioni O, Ghiselli R, Minardi D, et al. RNAIII-inhibiting peptide affects biofilm formation in a rat model of staphylococcal ureteral stent infection. Antimicrob Agents Chemother. 2007;51(12):4518–4520. doi: 10.1128/aac.00808-07
- Margel D, Mizrahi M, Regev-Shoshani G, et al. Nitric oxide charged catheters as a potential strategy for prevention of hospital acquired infections. PLoS One. 2017;12(4):e0174443. doi: 10.1371/journal.pone.0174443
- Homeyer KH, Goudie MJ, Singha P, Handa H. Liquid-infused nitric-oxide-releasing silicone Foley urinary catheters for prevention of catheter-associated urinary tract infections. ACS Biomater Sci Eng. 2019;5(4):2021–2029. doi: 10.1021/acsbiomaterials.8b01320
- Wo Y, Brisbois EJ, Bartlett RH, Meyerhoff ME. Recent advances in thromboresistant and antimicrobial polymers for biomedical applications: just say yes to nitric oxide (NO). Biomater Sci. 2016;4(8):1161–1183. doi: 10.1039/c6bm00271d
- Douglass M, Ghalei S, Brisbois E, Handa H. Potent, broad-spectrum antimicrobial effects of S-nitroso-N-acetylpencillamine-impregnated nitric oxide-releasing latex urinary catheters. ACS Appl Bio Mater. 2022;5(2):700–710. doi: 10.1021/acsabm.1c01130 EDN: RPFUFF
- Beiko DT, Watterson JD, Knudsen BE, et al. Double-blind randomized controlled trial assessing the safety and efficacy of intravesical agents for ureteral stent symptoms after extracorporeal shockwave lithotripsy. J Endourol. 2004;18(8):723–730. doi: 10.1089/end.2004.18.723
- Chew BH, Davoudi H, Li J, Denstedt JD. An in vivo porcine evaluation of the safety, bioavailability, and tissue penetration of a ketorolac drug-eluting ureteral stent designed to improve comfort. J Endourol. 2010;24(6): 1023–1029. doi: 10.1089/end.2009.0523
- Krambeck AE, Walsh RS, Denstedt JD, et al. A novel drug eluting ureteral stent: a prospective, randomized, multicenter clinical trial to evaluate the safety and effectiveness of a ketorolac loaded ureteral stent. J Urol. 2010;183(3):1037–1042. doi: 10.1016/j.juro.2009.11.035
- Antimisiaris SG, Siablis D, Liatsikos E, et al. Liposome-coated metal stents: an in vitro evaluation of controlled-release modality in the ureter. J Endourol. 2000;14(9):743–747. doi: 10.1089/end.2000.14.743
- Kotsar A, Nieminen R, Isotalo T, et al. Preclinical evaluation of new indomethacin-eluting biodegradable urethral stent. J Endourol. 2012;26(4): 387–392. doi: 10.1089/end.2011.0327
- Barros AA, Oliveira C, Reis RL, et al. Ketoprofen-eluting biodegradable ureteral stents by CO2 impregnation: in vitro study. Int J Pharm. 2015;495(2):651–659. doi: 10.1016/j.ijpharm.2015.08.040
- Lin YC, Liu KS, Lee D, et al. In vivo and in vitro elution of analgesics from multilayered poly(d, l)-lactide-co-glycolide nanofibers-incorporated ureteral stents. J Nanomater. 2018;2018(1):4943210. doi: 10.1155/2018/4943210
- Liatsikos EN, Karnabatidis D, Kagadis GC, et al. Application of paclitaxel-eluting metal mesh stents within the pig ureter: an experimental study. Eur Urol. 2007;51(1):217–223. doi: 10.1016/j.eururo.2006.06.040
- Will TA, Polcari AJ, Garcia JG, et al. Paclitaxel inhibits ureteral smooth muscle cell proliferation and collagen production in the absence of cell toxicity. J Urol. 2011;185(1):335–340. doi: 10.1016/j.juro.2010.09.006
- Kram W, Rebl H, Wyrwa R, et al. Paclitaxel-coated stents to prevent hyperplastic proliferation of ureteral tissue: from in vitro to in vivo. Urolithiasis. 2020;48(1):47–56. doi: 10.1007/s00240-019-01142-4 EDN: MIHPHV
- Barros AA, Browne S, Oliveira C, et al. Drug-eluting biodegradable ureteral stent: new approach for urothelial tumors of upper urinary tract cancer. Int J Pharm. 2016;513(1–2):227–237. doi: 10.1016/j.ijpharm.2016.09.003
- Lim WS, Chen K, Chong TW, et al. A bilayer swellable drug-eluting ureteric stent: localized drug delivery to treat urothelial diseases. Biomaterials. 2018;165:25–38. doi: 10.1016/j.biomaterials.2018.02.034
- Soria F, Martínez-Pla L, Aznar-Cervantes SD, et al. Cytotoxicity assessment of a new design for a biodegradable ureteral mitomycin drug-eluting stent in urothelial carcinoma cell culture. Polymers (Basel). 2022;14(19):4081. doi: 10.3390/polym14194081 EDN: RRLFOD
- Soria F, Delacruz JE, Aznar-Cervantes SD, et al. Animal model assessment of a new design for a coated mitomycin-eluting biodegradable ureteral stent for intracavitary instillation as an adjuvant therapy in upper urothelial carcinoma. Minerva Urol Nephrol. 2023;75(2):194–202. doi: 10.23736/S2724-6051.23.05152-2 EDN: CYLQEB
- Lei L, Liu X, Guo S, et al. 5-Fluorouracil-loaded multilayered films for drug controlled releasing stent application: drug release, microstructure, and ex vivo permeation behaviors. J Control Release. 2010;146(1):45–53. doi: 10.1016/j.jconrel.2010.05.017
- Kallidonis P, Kitrou P, Karnabatidis D, et al. Evaluation of zotarolimus-eluting metal stent in animal ureters. J Endourol. 2011;25(10):1661–1667. doi: 10.1089/end.2011.0308
- Han K, Park JH, Yang SG, et al. EW-7197 eluting nano-fiber covered self-expandable metallic stent to prevent granulation tissue formation in a canine urethral model. PLoS One. 2018;13(2):e0192430. doi: 10.1371/journal.pone.0192430
- Hu J, Wang Z, Hu H, et al. In vitro and in vivo assessment of a bilayered degradable rapamycin-eluting stent for ureteral stricture caused by holmium: YAG laser lithotripsy. Acta Biomater. 2023;172:321–329. doi: 10.1016/j.actbio.2023.10.009 EDN: ZCXLWE
- Zhang T, Zhao W, Ren T, et al. The effects and mechanisms of the rapamycin-eluting stent in urethral stricture prevention in rabbits. Balkan Med J. 2022;39(2):107–114. doi: 10.4274/balkanmedj.galenos.2021.2021-10-7
- Duan L, Li L, Zhao Z, et al. Antistricture ureteral stents with a braided composite structure and surface modification with antistenosis drugs. ACS Biomater Sci Eng. 2024;10(1):607–619. doi: 10.1021/acsbiomaterials.3c00781 EDN: TWVLJK
- Jiang Z, Wang J, Meng W, et al. Inhibition of ureteral stricture by pirfenidone-loaded nanoparticle-coated ureteral stents with slow-release pirfenidone. Int J Nanomedicine. 2022;17:6579–6591. doi: 10.2147/ijn.s390513 EDN: GASTIS
- Cai Z, Luo W, Zhuang H, et al. Dual-layer drug release system based on ureteral stents inhibits the formation of ureteral stricture. Chem Eng J. 2023;471:144596. doi: 10.1016/j.cej.2023.144596 EDN: ZEGYEU
Supplementary files

