Development of contractures in spastic forms of cerebral palsy: Pathogenesis and prevention
- Authors: Klochkova O.A.1, Kurenkov A.L.1, Kenis V.M.2
-
Affiliations:
- National Medical Research Center of Children’s Health
- The Turner Scientific Research Institute for Children’s Orthopedics
- Issue: Vol 6, No 1 (2018)
- Pages: 58-66
- Section: Review
- URL: https://bakhtiniada.ru/turner/article/view/8392
- DOI: https://doi.org/10.17816/PTORS6158-66
- ID: 8392
Cite item
Abstract
The origin of contractures in spastic forms of cerebral palsy (CP) is unclear. Tomorrow the early appearance and persistence of spasticity are not qualified as the main reason of growths disturbances, musculo-skeletal system deformations and secondary orthopedic complications. The latest investigations have shown prominent changes in the spastic muscles on the different structural levels and stages of muscle development. This study describes the histological, morphological, and biomechanical changes in the spastic muscles that play a pathophysiological role in the formation of CP contractions. The authors discuss the changes in the muscle fiber size, differentiation and elastic properties, degrees of the lengthening resistance in the bundles of muscle fibers, extracellular matrix proliferation, structural and mechanical changes, disturbances in gene expression and regulation in the tendons and muscle tissue, changes in the length and number of sarcomers, as well as the length and cross-section of the whole muscle.
Therefore, the movement limitations and contractions in CP do not depend on one universal mechanism. It is a combination of different structural changes in the muscles and the failure of the central movement and postural control.
Full Text
##article.viewOnOriginalSite##About the authors
Olga A. Klochkova
National Medical Research Center of Children’s Health
Author for correspondence.
Email: klochkova_oa@nczd.ru
ORCID iD: 0000-0002-4079-3450
MD, PhD, Senior Researcher, Pediatrician, Neurologist
Russian Federation, 2, b.1, Lomonosovsky prospekt, Moscow, 119991Alexey L. Kurenkov
National Medical Research Center of Children’s Health
Email: alkurenkov@gmail.com
ORCID iD: 0000-0002-7269-9100
MD, PhD, Leading Researcher, Neurologist
Russian Federation, 2, b.1, Lomonosovsky prospekt, Moscow, 119991Vladimir M. Kenis
The Turner Scientific Research Institute for Children’s Orthopedics
Email: kenis@mail.ru
ORCID iD: 0000-0002-7651-8485
MD, PhD, Deputy Director for Development and External Relations, Head of Department of Pathology of the Foot, Neuroorthopedy and Systemic Diseases
Russian Federation, 64, Parkovaya str., Saint-Petersburg, Pushkin, 196603References
- Hurvitz EA, Peterson M, Fowler E. Muscle tone, strength and movement disorders. In: Dan B, Mayston M, Paneth N, Rosenbloom L, editors. Cerebral palsy: science and clinical practice. London: Mac Keith Press; 2014. P. 381-406.
- Rosenbaum P. Definition and clinical classification. In: Dan B, Mayston M, Paneth N, Rosenbloom L, editors. Cerebral palsy: science and clinical practice. London: Mac Keith Press; 2014. P. 17-26.
- Батышева Т.Т., Быкова О.В., Виноградов А.В. Приверженность семьи к лечению ребенка с неврологической патологией // Журнал неврологии и психиатрии им. С.С. Корсакова. – 2012. – Т. 112. – № 7–2. – С. 56–63. [Batysheva TT, Bykova OV, Vinogradov AV. Family’s adherence to treatment of the child with a neurological pathology Family’s adherence to treatment of the child with a neurological pathology. Zh Nevrol Psikhiatr im. S.S. Korsakova. 2012;112(7-2):56-63. (In Russ.)]
- Graham HK, Rosenbaum P, Paneth N, et al. Cerebral palsy. Nat Rev Dis Primers. 2016;2:15082. doi: 10.1038/nrdp.2015.82.
- Hägglund G, Wagner P. Spasticity of the gastrosoleus muscle is related to the development of reduced passive dorsiflexion of the ankle in children with cerebral palsy: a registry analysis of 2,796 examinations in 355 children. Acta Orthop. 2011;82(6):744-748. doi: 10.3109/17453674.2011.618917.
- Heinen F, Desloovere K, Schroeder AS, et al. The updated European Consensus 2009 on the use of Botulinum toxin for children with cerebral palsy. Eur J Paediatr Neurol. 2010;14(1):45-66. doi: 10.1016/j.ejpn.2009.09.005.
- Novak I, McIntyre S, Morgan C, et al. A systematic review of interventions for children with cerebral palsy: state of the evidence. Dev Med Child Neurol. 2013;55(10):885-910. doi: 10.1111/dmcn.12246.
- Hof AL. Changes in muscles and tendons due to neural motor disorders: implications for therapeutic intervention. Neural Plast. 2001;8(1-2):71-81. doi: 10.1155/NP.2001.71.
- Tedroff K, Lowing K, Haglund-Akerlind Y, et al. Botulinum toxin A treatment in toddlers with cerebral palsy. Acta Paediatr. 2010;99(8):1156-1162. doi: 10.1111/j.1651-2227.2010.01767.
- Lieber RL, Roberts TJ, Blemker SS, et al. Skeletal muscle mechanics, energetics and plasticity. J Neuroeng Rehabil. 2017;14(1):108. doi: 10.1186/s12984-017-0318-y.
- Tedroff K, Lowing K, Jacobson DN, Astrom E. Does loss of spasticity matter? A 10-year follow-up after selective dorsal rhizotomy in cerebral palsy. Dev Med Child Neurol. 2011;53(8):724-729. doi: 10.1111/j.1469-8749.2011.03969.x.
- Mathewson MA, Lieber RL. Pathophysiology of muscle contractures in cerebral palsy. Phys Med Rehabil Clin N Am. 2015;26(1):57-67. doi: 10.1016/j.pmr.2014.09.005.
- Lieber RL, Steinman S, Barash IA, Chambers H. Structural and functional changes in spastic skeletal muscle. Muscle Nerve. 2004;29(5):615-627. doi: 10.1002/mus.20059.
- Castle ME, Reyman TA, Schneider M. Pathology of spastic muscle in cerebral palsy. Clin Orthop Relat Res. 1979;(142):223-232. doi: 10.1097/00003086-197907000-00036.
- Romanini L, Villani C, Meloni C, Calvisi V. Histological and morphological aspects of muscle in infantile cerebral palsy. Ital J Orthop Traumatol. 1989;15(1):87-93.
- Rose J, Haskell WL, Gamble JG, et al. Muscle pathology and clinical measures of disability in children with cerebral palsy. J Orthop Res. 1994;12(6):758-768. doi: 10.1002/jor.1100120603.
- Ito J-i, Araki A, Tanaka H, et al. Muscle histopathology in spastic cerebral palsy. Brain Dev. 1996;18(4):299-303. doi: 10.1016/0387-7604(96)00006-x.
- Booth CM, Cortina-Borja MJF, Theologis TN. Collagen accumulation in muscles of children with cerebral palsy and correlation with severity of spasticity. Dev Med Child Neurol. 2001;43(5):314. doi: 10.1017/s0012162201000597.
- Dubowitz V, Sewry SA, Oldfors A. Muscle Biopsy: A Practical Approach. 4th ed. Philadelphia: Saunders Ltd; 2013.
- Schiaffino S, Reggiani C. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev. 1996;76(2):371-423. doi: 10.1152/physrev.1996.76.2.371.
- Moore GE, Goldspink G. The effect of reduced activity on the enzymatic development of phasic and tonic muscles in the chicken. J Dev Physiol. 1985;7(6):381-386.
- Baldwin KM, Haddad F. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms. Am J Phys Med Rehabil. 2002;81(11 Suppl):S40-51. doi: 10.1097/01.PHM.0000029723.36419.0D.
- Berry MM, Standring SM, Bannister LM. The nervous system. In: Williams PL, Bannister LH, Berry MM, editors. Gray’s Anatomy. 38th ed. London: Churchill Livingstone; 1995. P. 901-1398.
- Jones D, Round J, de Haan A. Skeletal Muscle: From Molecules to Movement. London: Churchill Livingstone; 2004.
- Dietz V, Ketelsen UP, Berger W, Quintern J. Motor unit involvement in spastic paresis. J Neurol Sci. 1986;75(1):89-103. doi: 10.1016/0022-510x(86)90052-3.
- Baldwin KM, Haddad F. Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle. J Appl Physiol (1985). 2001;90(1):345-357. doi: 10.1152/jappl.2001.90.1.345.
- Sarnat HB. Cerebral dysgeneses and their influence on fetal muscle development. Brain Dev. 1986;8(5):495-499. doi: 10.1016/s0387-7604(86)80093-6.
- Фундаментальная и клиническая физиология: Учебник для студентов высших учебных заведений / Под ред. А.Г. Камкина, А.А. Каменского. – М.: Академия, 2004. [Kamkin AG, Kamensky AA, editors. Fundamental and Clinical Physiology: A Textbook for Students of Higher Educational Institutions. Moscow: Akademiya; 2004. (In Russ.)]
- Salmons S, Sréter FA. Significance of impulse activity in the transformation of skeletal muscle type. Nature. 1976;263(5572):30-34. doi: 10.1038/263030a0.
- Pette D, Smith ME, Staudte HW, Vrbova G. Effects of long-term electrical stimulation on some contractile and metabolic characteristics of fast rabbit muscles. Pflugers Arch. 1973;338(3):257-272. doi: 10.1007/bf00587391.
- Eisenberg B, Salmons S. The reorganization of subcellular structure in muscle undergoing fast-to-slow type transformation. Cell Tissue Res. 1981;220(3):449-471. doi: 10.1007/bf00216750.
- Booth FW, Kelso JR. Effect of hind-limb immobilization on contractile and histochemical properties of skeletal muscle. Pflugers Arch. 1973;342(3):231-238. doi: 10.1007/bf00591371.
- Maier A, Crockett JL, Simpson DR, et al. Properties of immobilized guinea pig hindlimb muscles. Am J Physiol. 1976;231(5):1520-1526. doi: 10.1152/ajplegacy.1976.231.5.1520.
- Buller AJ, Lewis DM. Some observations on the effects of tenotomy in the rabbit J Physiol (Lond). 1965;178(2):326-342. doi: 10.1113/jphysiol.1965.sp007630.
- Roy RR, Bello MA, Bouissou P, Edgerton VR. Size and metabolic properties of fibers in rat fast-twitch muscles after hindlimb suspension. J Appl Physiol. 1987;62(6):2348-2357. doi: 10.1152/jappl.1987.62.6.2348.
- Marbini A, Ferrari A, Cioni G, et al. Immunohistochemical study of muscle biopsy in children with cerebral palsy. Brain Dev. 2002;24(2):63-66. doi: 10.1016/s0387-7604(01)00394-1.
- Sjostrom M, Fugl-Meyer AR, Nordin G, Wahlby L. Post-stroke hemiplegia; crural muscle strength and structure. Scand J Rehabil Med Suppl. 1980;7:53-67.
- Lieber RL, Runesson E, Einarsson F, Fridén J. Inferior mechanical properties of spastic muscle bundles due to hypertrophic but compromised extracellular matrix material. Muscle Nerve. 2003;28(4):464471. doi: 10.1002/mus.10446.
- Friden J, Lieber RL. Spastic muscle cells are shorter and stiffer than normal cells. Muscle Nerve. 2003;27(2):157-164. doi: 10.1002/mus.10247.
- Labeit S, Kolmerer B. Titins: Giant Proteins in Charge of Muscle Ultrastructure and Elasticity. Science. 1995;270(5234):293-296. doi: 10.1126/science.270.5234.293.
- Neagoe C, Kulke M, del Monte F, et al. Titin isoform switch in ischemic human heart disease. Circulation. 2002;106(11):1333-1341. doi: 10.1161/01.cir.0000029803.93022.93.
- Smith LR, Chambers HG, Lieber RL. Reduced satellite cell population may lead to contractures in children with cerebral palsy. Dev Med Child Neurol. 2013;55(3):264270. doi: 10.1111/dmcn.12027.
- Dayanidhi S, Lieber RL. Skeletal muscle satellite cells: mediators of muscle growth during development and implications for developmental disorders. Muscle Nerve. 2014;50(5):723-732. doi: 10.1002/mus.24441.
- Gagliano N, Pelillo F, Chiriva-Internati M, et al. Expression profiling of genes involved in collagen turnover in tendons from cerebral palsy patients. Connect Tissue Res. 2009;50(3):203-208. doi: 10.1080/03008200802613630.
- Smith LR, Ponten E, Hedstrom Y, et al. Novel transcriptional profile in wrist muscles from cerebral palsy patients. BMC Med Genomics. 2009;2:44. doi: 10.1186/1755-8794-2-44.
- Smith LR, Chambers HG, Subramaniam S, Lieber RL. Transcriptional abnormalities of hamstring muscle contractures in children with cerebral palsy. PLoS ONE. 2012;7(8):e40686. doi: 10.1371/journal.pone.0040686.
- de Bruin M, Smeulders MJ, Kreulen M, et al. Intramuscular connective tissue differences in spastic and control muscle: a mechanical and histological study. PLoS ONE. 2014;9(6):e101038. doi: 10.1371/journal.pone.0101038.
- O’Dwyer NJ, Neilson PD, Nash J. Mechanisms of Muscle Growth Related to Muscle Contracture in Cerebral Palsy. Dev Med Child Neurol. 2008;31(4):543-547. doi: 10.1111/j.1469-8749.1989.tb04034.x.
- Lieber RL, Fridén J. Spasticity causes a fundamental rearrangement of muscle-joint interaction. Muscle Nerve. 2002;25(2):265-270. doi: 10.1002/mus.10036.
- Farmer SE. Key factors in the development of lower limb co-ordination: implications for the acquisition of walking in children with cerebral palsy. Disabil Rehabil. 2009;25(14):807-816. doi: 10.1080/0963828031000106148.
- De Ste Croix MBA, Deighan MA, Armstrong N. Assessment and Interpretation of Isokinetic Muscle Strength During Growth and Maturation. Sports Med. 2003;33(10):727-743. doi: 10.2165/00007256-200333100-00002.
- Elder GCB, Kirk J, Stewart G, et al. Contributing factors to muscle weakness in children with cerebral palsy. Dev Med Child Neurol. 2003;45(08). doi: 10.1017/s0012162203000999.
- Gondret F, Lefaucheur L, Juin H, et al. Low birth weight is associated with enlarged muscle fiber area and impaired meat tenderness of the longissimus muscle in pigs1,2. J Anim Sci. 2006;84(1):93-103. doi: 10.2527/2006.84193x.
- Damiano D, Moreau N. Muscle thickness reflects activity in CP but how well does it represent strength? Dev Med Child Neurol. 2008;50(2):88. doi: 10.1111/j.1469-8749.2007.00088.x.
- Hosl M, Bohm H, Arampatzis A, et al. Contractile behavior of the medial gastrocnemius in children with bilateral spastic cerebral palsy during forward, uphill and backward-downhill gait. Clin Biomech (Bristol, Avon). 2016;36:32-39. doi: 10.1016/j.clinbiomech.2016.05.008.
Supplementary files
