Surgical Correction of Kyphoscoliotic Spinal Deformity in a Child With Conradi–Hünermann Syndrome: A Case Report and Review
- Authors: Asadulaev M.S.1, Vissarionov S.V.1, Pershina P.A.1, Malamashin D.B.1, Toria V.G.1, Kokushin D.N.1, Rybinskikh T.S.1, Belyanchikov S.M.1, Murashko T.V.1
-
Affiliations:
- H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
- Issue: Vol 13, No 3 (2025)
- Pages: 307-318
- Section: Clinical cases
- URL: https://bakhtiniada.ru/turner/article/view/349953
- DOI: https://doi.org/10.17816/PTORS689632
- EDN: https://elibrary.ru/DCHNKI
- ID: 349953
Cite item
Abstract
BACKGROUND: Conradi–Hünermann syndrome, also called X-linked dominant chondrodysplasia punctata type 2, is a rare genetic disorder. Its prevalence ranges from 1:100,000 to 1:400,000 live births, with a >95% female predominance. In pediatric vertebrology, particular interest is drawn to kyphosis and kyphoscoliosis, which rapidly progress and lead to severe deformities. However, in Russian scientific data, only a few studies have investigated the diagnosis and treatment of this syndrome.
CASE DESCRIPTION: This report presents the medical history and genetic and clinical–radiological findings of a 3-year-3-month-old child with Conradi–Hünermann syndrome. The results of surgical treatment are provided, and possible approaches for selecting surgical strategies are discussed.
DISCUSSION: The development of severe spinal deformity (Cobb angle: >50°) in the frontal and sagittal planes in younger patients (aged 2–5 years) is an unfavorable prognostic factor. For such patients, prompt surgical correction of spinal deformity at an early age, along with stabilization of the achieved result using multi-anchor instrumentation, is crucial for preventing neurological deficits and the rapid progression of curvature during the child’s subsequent growth.
CONCLUSION: Early clinical and genetic diagnosis is required in children with suspected Conradi–Hünermann syndrome. Monitoring of the patient’s orthopedic status allows for timely referral to a spine specialist. Treatment for progressive kyphoscoliosis should include early surgical intervention. Deformity correction and stabilization with multi-anchor instrumentation without early spinal fusion may be used, followed by staged corrections if warranted.
Full Text
##article.viewOnOriginalSite##About the authors
Marat S. Asadulaev
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Author for correspondence.
Email: marat.asadulaev@yandex.ru
ORCID iD: 0000-0002-1768-2402
SPIN-code: 3336-8996
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgSergei V. Vissarionov
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048
SPIN-code: 7125-4930
MD, Dr. Sci. (Medicine), Professor, Corresponding Member of RAS
Russian Federation, Saint PetersburgPolina A. Pershina
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: polinaiva2772@gmail.com
ORCID iD: 0000-0001-5665-3009
SPIN-code: 2484-9463
MD
Russian Federation, Saint PetersburgDenis B. Malamashin
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: malamashin@mail.ru
ORCID iD: 0000-0002-7356-6860
SPIN-code: 9650-6020
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgVakhtang G. Toria
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: vakdiss@yandex.ru
ORCID iD: 0000-0002-2056-9726
SPIN-code: 1797-5031
MD
Russian Federation, Saint PetersburgDmitriy N. Kokushin
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: partgerm@yandex.ru
ORCID iD: 0000-0002-2510-7213
SPIN-code: 9071-4853
MD, Dr. Sci. (Medicine)
Russian Federation, Saint PetersburgTimofey S. Rybinskikh
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: timofey1999r@gmail.com
ORCID iD: 0000-0002-4180-5353
SPIN-code: 7739-4321
MD
Russian Federation, Saint PetersburgSergei M. Belyanchikov
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: beljanchikov@list.ru
ORCID iD: 0000-0002-7464-1244
SPIN-code: 9953-5500
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgTatiana V. Murashko
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: popova332@mail.ru
ORCID iD: 0000-0002-0596-3741
SPIN-code: 9295-6453
MD
Russian Federation, Saint PetersburgReferences
- rarediseases.org [Internet]. Conradi Hünermann Syndrome. National Organization for Rare Disorders (NORD). Danbury (CT): NORD; 2021. [cited 2025 Aug 10] Available from: https://rarediseases.org/rare-diseases/conradi-hunermann-syndrome
- Mason DE, Sanders JO, MacKenzie WG, et al. Spinal deformity in chondrodysplasia punctata. Spine (Phila Pa 1976). 2002;27(18):1995–2002. doi: 10.1097/00007632-200209150-00007
- Lykissas MG, Sturm PF, McClung A, et al. Challenges of spine surgery in patients with chondrodysplasia punctata. J Pediatr Orthop. 2013;33(7):685–693. doi: 10.1097/BPO.0b013e31829e86a9
- Kabirian N, Hunt LA, Ganjavian MS, et al. Progressive early-onset scoliosis in Conradi disease: a 34-year follow-up of surgical management. J Pediatr Orthop. 2013;33(2):e4–e9. doi: 10.1097/BPO.0b013e31827364a5
- Kelley RI, Wilcox WG, Smith M, et al. Abnormal sterol metabolism in patients with Conradi-Hunermann-Happle syndrome and sporadic lethal chondrodysplasia punctata. Am J Med Genet. 1999;83(3):213–219. doi: 10.1002/(sici)1096-8628(19990319)83:3<213::aid-ajmg15>3.0.co;2-c
- Derry JM, Gormally E, Means GD, et al. Mutations in a Δ8-Δ7 sterol isomerase in the tattered mouse and X-linked dominant chondrodysplasia punctata. Nat Genet. 1999;22(3):286–290. doi: 10.1038/10350
- Braverman N, Lin P, Moebius FF, et al. Mutations in the gene encoding 3β-hydroxysteroid-Δ8, Δ7-isomerase cause X-linked dominant Conradi-Hunermann syndrome. Nat Genet. 1999;22(3):291–294. doi: 10.1038/10357
- Herman GE, Walton SJ. Close linkage of the murine locus bare patches to the X-linked visual pigment gene: implications for mapping human X-linked dominant chondrodysplasia punctata. Genomics. 1990;7(3):307–312. doi: 10.1016/0888-7543(90)90162-n
- Herman GE, Kelley RI, Pureza V, et al. Characterization of mutations in 22 females with X-linked dominant chondrodysplasia punctata (Happle syndrome). Genet Med. 2002;4(6):434–438. doi: 10.1097/00125817-200211000-00006
- Bukkems SF, Ijspeert WJ, Vreenurg M, et al. Conradi-Hünermann-Happle syndrome. Ned Tijdschr Geneeskd. 2012;156(10):A4105. (In Dutch).
- Braverman N, Steel G, Obie C, et al. Human PEX7 encodes the peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punctata. Nat Genet. 1997;15(4):369–376. doi: 10.1038/ng0497-369
- Has C, Seedorf U, Kannenberg F, et al. Gas chromatography-mass spectrometry and molecular genetic studies in families with the Conradi-Hünermann-Happle syndrome. J Invest Dermatol. 2002;118(5):851–858. doi: 10.1046/j.1523-1747.2002.01761.x EDN: BANFKP
- Cardoso ML, Barbosa M, Serra D, et al. Living with inborn errors of cholesterol biosynthesis: lessons from adult patients. Clin Genet. 2014;85(2):184–188. doi: 10.1111/cge.12139
- Corbí MR, Conejo-Mir JS, Linares M, et al. Conradi-Hünermann syndrome with unilateral distribution. Pediatr Dermatol. 1998;15(4):299–303. doi: 10.1046/j.1525-1470.1998.1998015299.x
- Aughton DJ, Kelley RI, Metzenberg A, et al. X-linked dominant chondrodysplasia punctata (CDPX2) caused by single gene mosaicism in a male. Am J Med Genet A. 2003;116A(3):255–260. doi: 10.1002/ajmg.a.10852
- Kumble S, Savarirayan R. Chondrodysplasia punctata 2, X-linked. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews®. Seattle (WA): University of Washington: Seattle; 2011.
- Ryabykh SO, Ulrich EV, Mushkin AYu, et al. Treatment of congenital spinal deformities in children: yesterday, today, tomorrow. Spine Surgery. 2020;17(1):15–24. doi: 10.14531/ss2020.1.15-24 EDN: EMPNLO
- Kuleshov AA, Vetrile MS, Lisyansky IN, et al. Surgical treatment of a patient with congenital deformity of the spine, the thoracic and lumbar pedicle aplasia, and spinal compression syndrome. Spine Surgery. 2016;13(3):41–48. doi: 10.14531/ss2016.3.41-48 EDN: WKYPBR
- Vissarionov SV, Murashko VV, Murashko TV, et al. Surgical treatment of patients with congenital deformities in multilevel bilateral thoracic and lumbar pedicle aplasia. Spine Surgery. 2015;12(3):19–27. doi: 10.14531/ss2015.3.19-27 EDN: UMGWNL
- Sutphen R, Amar MJ, Kousseff BG, et al. XXY male with X-linked dominant chondrodysplasia punctata (Happle syndrome). Am J Med Genet. 1995;57(3):489–492. doi: 10.1002/ajmg.1320570326
- Hatia M, Roxo D, Pires MS, et al. Chondrodysplasia punctata: early diagnosis and multidisciplinary management of Conradi-Hünermann-Happle syndrome (CDPX2). Cureus. 2024;16(12):e75605. doi: 10.7759/cureus.75605
- De Jesus S, Costa ALR, Almeida M, et al. Conradi-Hünerman-Happle syndrome and obsessive-compulsive disorder: a clinical case report. BMC Psychiatry. 2023;23(1):87. doi: 10.1186/s12888-023-04579-1 EDN: HZCXZF
- Happle R. X-linked dominant chondrodysplasia punctata/ichthyosis/cataract syndrome in males. Am J Med Genet. 1995;57(3):493. doi: 10.1002/ajmg.1320570327
- Capelozza Filho L, de Almeida Cardoso M, Caldeira EJ, et al. Ortho-surgical management of a Conradi-Hünermann syndrome patient: rare case report. Clin Case Rep. 2015;3(8):694–701. doi: 10.1002/ccr3.307
- Happle R. X-linked dominant chondrodysplasia punctata: review of literature and report of a case. Hum Genet. 1979;53(1):65–73. doi: 10.1007/BF00278240 EDN: KBXMMA
- Vissarionov SV. Surgical treatment of segmental instability of the thoracic and lumbar spine in children [dissertation abstract]. Novosibirsk: Novosibirsk Research Institute of Traumatology and Orthopedics; 2008. 165 p. EDN: NQLDFL (In Russ.)
- Vissarionov SV, Khusainov NO, Kokushin DN. Analysis of results of treatment without-of-spine-based implants in patients with multiple congenital anomalies of the spine and thorax. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2017;5(2):5–12. doi: 10.17816/PTORS525-12 EDN: WGMTGO
- Mikhaylovskiy MV, Ulrich EV, Suzdalov VA, et al. VEPTR instrumentation in the surgery for infantile and juvenile scoliosis: first experience in Russia. Spine Surgery. 2010;(3):31–41. doi: 10.14531/ss2010.3.31-41 EDN: MUPPIJ
- Murphy RF, Moisan A, Kelly DM, et al. Use of vertical expandable prosthetic titanium rib (VEPTR) in the treatment of congenital scoliosis without fused ribs. J Pediatr Orthop. 2016;36(4):329–335. doi: 10.1097/BPO.0000000000000460
- Tsirikos AI, Roberts SB. Magnetic controlled growth rods in the treatment of scoliosis: safety, efficacy and patient selection. Med Devices (Auckl). 2020;13:75–85. doi: 10.2147/MDER.S198176
Supplementary files












