Surgical Correction of Kyphoscoliotic Spinal Deformity in a Child With Conradi–Hünermann Syndrome: A Case Report and Review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Conradi–Hünermann syndrome, also called X-linked dominant chondrodysplasia punctata type 2, is a rare genetic disorder. Its prevalence ranges from 1:100,000 to 1:400,000 live births, with a >95% female predominance. In pediatric vertebrology, particular interest is drawn to kyphosis and kyphoscoliosis, which rapidly progress and lead to severe deformities. However, in Russian scientific data, only a few studies have investigated the diagnosis and treatment of this syndrome.

CASE DESCRIPTION: This report presents the medical history and genetic and clinical–radiological findings of a 3-year-3-month-old child with Conradi–Hünermann syndrome. The results of surgical treatment are provided, and possible approaches for selecting surgical strategies are discussed.

DISCUSSION: The development of severe spinal deformity (Cobb angle: >50°) in the frontal and sagittal planes in younger patients (aged 2–5 years) is an unfavorable prognostic factor. For such patients, prompt surgical correction of spinal deformity at an early age, along with stabilization of the achieved result using multi-anchor instrumentation, is crucial for preventing neurological deficits and the rapid progression of curvature during the child’s subsequent growth.

CONCLUSION: Early clinical and genetic diagnosis is required in children with suspected Conradi–Hünermann syndrome. Monitoring of the patient’s orthopedic status allows for timely referral to a spine specialist. Treatment for progressive kyphoscoliosis should include early surgical intervention. Deformity correction and stabilization with multi-anchor instrumentation without early spinal fusion may be used, followed by staged corrections if warranted.

About the authors

Marat S. Asadulaev

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Author for correspondence.
Email: marat.asadulaev@yandex.ru
ORCID iD: 0000-0002-1768-2402
SPIN-code: 3336-8996

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Sergei V. Vissarionov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048
SPIN-code: 7125-4930

MD, Dr. Sci. (Medicine), Professor, Corresponding Member of RAS

Russian Federation, Saint Petersburg

Polina A. Pershina

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: polinaiva2772@gmail.com
ORCID iD: 0000-0001-5665-3009
SPIN-code: 2484-9463

MD

Russian Federation, Saint Petersburg

Denis B. Malamashin

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: malamashin@mail.ru
ORCID iD: 0000-0002-7356-6860
SPIN-code: 9650-6020

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Vakhtang G. Toria

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: vakdiss@yandex.ru
ORCID iD: 0000-0002-2056-9726
SPIN-code: 1797-5031

MD

Russian Federation, Saint Petersburg

Dmitriy N. Kokushin

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: partgerm@yandex.ru
ORCID iD: 0000-0002-2510-7213
SPIN-code: 9071-4853

MD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg

Timofey S. Rybinskikh

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: timofey1999r@gmail.com
ORCID iD: 0000-0002-4180-5353
SPIN-code: 7739-4321

MD

Russian Federation, Saint Petersburg

Sergei M. Belyanchikov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: beljanchikov@list.ru
ORCID iD: 0000-0002-7464-1244
SPIN-code: 9953-5500

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Tatiana V. Murashko

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: popova332@mail.ru
ORCID iD: 0000-0002-0596-3741
SPIN-code: 9295-6453

MD

Russian Federation, Saint Petersburg

References

  1. rarediseases.org [Internet]. Conradi Hünermann Syndrome. National Organization for Rare Disorders (NORD). Danbury (CT): NORD; 2021. [cited 2025 Aug 10] Available from: https://rarediseases.org/rare-diseases/conradi-hunermann-syndrome
  2. Mason DE, Sanders JO, MacKenzie WG, et al. Spinal deformity in chondrodysplasia punctata. Spine (Phila Pa 1976). 2002;27(18):1995–2002. doi: 10.1097/00007632-200209150-00007
  3. Lykissas MG, Sturm PF, McClung A, et al. Challenges of spine surgery in patients with chondrodysplasia punctata. J Pediatr Orthop. 2013;33(7):685–693. doi: 10.1097/BPO.0b013e31829e86a9
  4. Kabirian N, Hunt LA, Ganjavian MS, et al. Progressive early-onset scoliosis in Conradi disease: a 34-year follow-up of surgical management. J Pediatr Orthop. 2013;33(2):e4–e9. doi: 10.1097/BPO.0b013e31827364a5
  5. Kelley RI, Wilcox WG, Smith M, et al. Abnormal sterol metabolism in patients with Conradi-Hunermann-Happle syndrome and sporadic lethal chondrodysplasia punctata. Am J Med Genet. 1999;83(3):213–219. doi: 10.1002/(sici)1096-8628(19990319)83:3<213::aid-ajmg15>3.0.co;2-c
  6. Derry JM, Gormally E, Means GD, et al. Mutations in a Δ8-Δ7 sterol isomerase in the tattered mouse and X-linked dominant chondrodysplasia punctata. Nat Genet. 1999;22(3):286–290. doi: 10.1038/10350
  7. Braverman N, Lin P, Moebius FF, et al. Mutations in the gene encoding 3β-hydroxysteroid-Δ8, Δ7-isomerase cause X-linked dominant Conradi-Hunermann syndrome. Nat Genet. 1999;22(3):291–294. doi: 10.1038/10357
  8. Herman GE, Walton SJ. Close linkage of the murine locus bare patches to the X-linked visual pigment gene: implications for mapping human X-linked dominant chondrodysplasia punctata. Genomics. 1990;7(3):307–312. doi: 10.1016/0888-7543(90)90162-n
  9. Herman GE, Kelley RI, Pureza V, et al. Characterization of mutations in 22 females with X-linked dominant chondrodysplasia punctata (Happle syndrome). Genet Med. 2002;4(6):434–438. doi: 10.1097/00125817-200211000-00006
  10. Bukkems SF, Ijspeert WJ, Vreenurg M, et al. Conradi-Hünermann-Happle syndrome. Ned Tijdschr Geneeskd. 2012;156(10):A4105. (In Dutch).
  11. Braverman N, Steel G, Obie C, et al. Human PEX7 encodes the peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punctata. Nat Genet. 1997;15(4):369–376. doi: 10.1038/ng0497-369
  12. Has C, Seedorf U, Kannenberg F, et al. Gas chromatography-mass spectrometry and molecular genetic studies in families with the Conradi-Hünermann-Happle syndrome. J Invest Dermatol. 2002;118(5):851–858. doi: 10.1046/j.1523-1747.2002.01761.x EDN: BANFKP
  13. Cardoso ML, Barbosa M, Serra D, et al. Living with inborn errors of cholesterol biosynthesis: lessons from adult patients. Clin Genet. 2014;85(2):184–188. doi: 10.1111/cge.12139
  14. Corbí MR, Conejo-Mir JS, Linares M, et al. Conradi-Hünermann syndrome with unilateral distribution. Pediatr Dermatol. 1998;15(4):299–303. doi: 10.1046/j.1525-1470.1998.1998015299.x
  15. Aughton DJ, Kelley RI, Metzenberg A, et al. X-linked dominant chondrodysplasia punctata (CDPX2) caused by single gene mosaicism in a male. Am J Med Genet A. 2003;116A(3):255–260. doi: 10.1002/ajmg.a.10852
  16. Kumble S, Savarirayan R. Chondrodysplasia punctata 2, X-linked. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews®. Seattle (WA): University of Washington: Seattle; 2011.
  17. Ryabykh SO, Ulrich EV, Mushkin AYu, et al. Treatment of congenital spinal deformities in children: yesterday, today, tomorrow. Spine Surgery. 2020;17(1):15–24. doi: 10.14531/ss2020.1.15-24 EDN: EMPNLO
  18. Kuleshov AA, Vetrile MS, Lisyansky IN, et al. Surgical treatment of a patient with congenital deformity of the spine, the thoracic and lumbar pedicle aplasia, and spinal compression syndrome. Spine Surgery. 2016;13(3):41–48. doi: 10.14531/ss2016.3.41-48 EDN: WKYPBR
  19. Vissarionov SV, Murashko VV, Murashko TV, et al. Surgical treatment of patients with congenital deformities in multilevel bilateral thoracic and lumbar pedicle aplasia. Spine Surgery. 2015;12(3):19–27. doi: 10.14531/ss2015.3.19-27 EDN: UMGWNL
  20. Sutphen R, Amar MJ, Kousseff BG, et al. XXY male with X-linked dominant chondrodysplasia punctata (Happle syndrome). Am J Med Genet. 1995;57(3):489–492. doi: 10.1002/ajmg.1320570326
  21. Hatia M, Roxo D, Pires MS, et al. Chondrodysplasia punctata: early diagnosis and multidisciplinary management of Conradi-Hünermann-Happle syndrome (CDPX2). Cureus. 2024;16(12):e75605. doi: 10.7759/cureus.75605
  22. De Jesus S, Costa ALR, Almeida M, et al. Conradi-Hünerman-Happle syndrome and obsessive-compulsive disorder: a clinical case report. BMC Psychiatry. 2023;23(1):87. doi: 10.1186/s12888-023-04579-1 EDN: HZCXZF
  23. Happle R. X-linked dominant chondrodysplasia punctata/ichthyosis/cataract syndrome in males. Am J Med Genet. 1995;57(3):493. doi: 10.1002/ajmg.1320570327
  24. Capelozza Filho L, de Almeida Cardoso M, Caldeira EJ, et al. Ortho-surgical management of a Conradi-Hünermann syndrome patient: rare case report. Clin Case Rep. 2015;3(8):694–701. doi: 10.1002/ccr3.307
  25. Happle R. X-linked dominant chondrodysplasia punctata: review of literature and report of a case. Hum Genet. 1979;53(1):65–73. doi: 10.1007/BF00278240 EDN: KBXMMA
  26. Vissarionov SV. Surgical treatment of segmental instability of the thoracic and lumbar spine in children [dissertation abstract]. Novosibirsk: Novosibirsk Research Institute of Traumatology and Orthopedics; 2008. 165 p. EDN: NQLDFL (In Russ.)
  27. Vissarionov SV, Khusainov NO, Kokushin DN. Analysis of results of treatment without-of-spine-based implants in patients with multiple congenital anomalies of the spine and thorax. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2017;5(2):5–12. doi: 10.17816/PTORS525-12 EDN: WGMTGO
  28. Mikhaylovskiy MV, Ulrich EV, Suzdalov VA, et al. VEPTR instrumentation in the surgery for infantile and juvenile scoliosis: first experience in Russia. Spine Surgery. 2010;(3):31–41. doi: 10.14531/ss2010.3.31-41 EDN: MUPPIJ
  29. Murphy RF, Moisan A, Kelly DM, et al. Use of vertical expandable prosthetic titanium rib (VEPTR) in the treatment of congenital scoliosis without fused ribs. J Pediatr Orthop. 2016;36(4):329–335. doi: 10.1097/BPO.0000000000000460
  30. Tsirikos AI, Roberts SB. Magnetic controlled growth rods in the treatment of scoliosis: safety, efficacy and patient selection. Med Devices (Auckl). 2020;13:75–85. doi: 10.2147/MDER.S198176

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Panoramic X-ray tomography of the skeleton — spine, pelvis, femurs in the frontal (a) and lateral (b) projections. X-ray image of a congenital malformation of the spine due to malformation of the vertebrae. A localized left-sided kyphoscoliotic deformity of the spine was formed at the level of the thoracolumbar junction. The left-sided scoliotic curve ThX–LI is 85°, and the local kyphotic deformity at the ThIX–LI level is 85°.

Download (121KB)
3. Fig. 2. 3D reconstruction based on multislice computed tomography data: a — posterior view; b — anterior view; c — oblique projection. A congenital malformation of the spine is determined due to malformation of the vertebrae. Hypoplasia of the left half of the ThIX body, hypoplasia of the right half of the ThXI and ThXII bodies. Due to malosification of the vertebrae, a local left-sided kyphoscoliotic deformity of the spine has developed at the thoracolumbar junction. Left-sided scoliotic curve ThX–LI, local kyphotic deformity at the ThIX–LI level. The spinal canal is free of inclusions of pathological densitometric density.

Download (293KB)
4. Fig. 3. Multislice computed tomography in MPR (multiplanar reconstruction) mode revealed a lack of bony fusion of the vertebral arches with the bodies along ThVIII–LI bilaterally: a, b, c — visualization of the ThVIII arch root on the right; d, e, f — visualization of the ThVIII arch root on the left.

Download (238KB)
5. Fig. 4. Preoperative planning based on multislice computed tomography data of the thoracic and lumbar spine using the Stryker navigation station: a — planning of the reference points of the LI vertebra; b — multiplanar reconstruction mode, posterior view, position of the planned supporting elements; c — multiplanar reconstruction mode, position and trajectory of the planned supporting elements, lateral view. Colored markers — trajectory of the bone canals for subsequent implantation of the supporting elements of the multi-support metal structure.

Download (328KB)
6. Fig. 5. Magnetic resonance imaging data of the spine: a — axial section at the SII level; b — sagittal section. The spinal cord cone is at the level of the LII–LIII intervertebral disc. At the SII–SV level, the structure of the terminal thread with an increased signal in T1WI, characteristic of adipose tissue (terminal thread lipoma).

Download (63KB)
7. Fig. 6. External appearance of the surgical wound after the completed stage of correction and stabilization of the spinal deformity: 1 — cranial part of the wound; 2 — supporting elements of the metal structure; 3 — titanium rod, curved in accordance with the physiological curves of the spine, diameter 3.5 mm; 4 — apex of the deformity. 5 — full-thickness musculocutaneous flap for subsequent coverage of the metal structure during postoperative wound suturing; 6 — caudal wound section.

Download (171KB)
8. Fig. 7. Spondylograms of the thoracic and lumbar spine in the frontal (a) and lateral (b) projections under static loading demonstrate: in the frontal plane, the axis of the thoracic and lumbar spine is curved — a right-sided Th5–XI curve of 14° according to the Cobb scale. Local kyphotic deformity at the Th9–LI level is 16° according to the Cobb scale. A multi-support metal structure with a rod diameter of 3.5 mm is installed at the level of the Th7–LII vertebrae. The pelvic ring bones are tilted to the left, with multiplanar (valgus-torsion) deformity of the proximal left femur.

Download (140KB)
9. Fig. 8. Control study of multispiral computed tomography, multiplanar reconstruction mode, position of the supporting elements at the level of the Th8th vertebra: a, b, c — left side; d, e, f — right side.

Download (267KB)
10. Fig. 9. Radiographs taken before (a) and after (b) surgery demonstrate normalization of global and regional sagittal balance parameters. SVA (sacral vertical axis) before surgery was 44 mm, after – 31 mm.

Download (187KB)
11. Fig. 10. Patient's appearance after surgery – notable is reconstruction of the torso shape with improved sagittal, frontal, and torsional balance: a – posterior view; b – anterior view; c – lateral view.

Download (127KB)

Copyright (c) 2025 Эко-Вектор

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».