The influence of the TBX6 gene on the development of congenital spinal deformities in children
- Authors: Khalchitsky S.E.1, Vissarionov S.V.1, Kokushin D.N.1, Muldiiarov V.P.1, Khusainov N.O.1
-
Affiliations:
- H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
- Issue: Vol 9, No 3 (2021)
- Pages: 367-376
- Section: Review
- URL: https://bakhtiniada.ru/turner/article/view/70797
- DOI: https://doi.org/10.17816/PTORS70797
- ID: 70797
Cite item
Abstract
BACKGROUND: Congenital deformities of the spine are a group of serious congenital defects of the vertebrae, which can manifest themselves in the clinical picture as an isolated pathology of the axial musculoskeletal system, and are associated with congenital defects of internal organs and other systems. Recently, the TBX6 gene has been identified as the genetic cause of congenital scoliosis in about 11% of cases. This subtype of scoliosis is classified as TBX6-associated congenital scoliosis. The TBX6-associated congenital scoliosis phenotype is characterized by butterfly-shaped vertebrae and hemivertebrae in the lower thoracic and lumbar regions without pronounced malformations of the spinal cord.
AIM: Our aim is to study and evaluate data from foreign and domestic scientific publications devoted to the study of the candidate gene for congenital scoliosis TBX6.
MATERIALS AND METHODS: The following databases of scientific publications such as PubMed, Cochrane Library, Web of Science, SCOPUS, MEDLINE, e-Library, Cyberleninka were used to write this review. The inclusion criteria were systematic reviews, meta-analyses, multicenter studies, controlled cohort studies, uncontrolled cohort studies of patients with congenital spinal deformities. The exclusion criteria were clinical cases, observations, conference proceedings, congenital scoliosis in genetic syndromes, congenital scoliosis associated with defects of the nervous system.
RESULTS: In order to achieve this goal, 70 scientific publications were studied relating to the data analysis of the candidate gene for congenital scoliosis TBX6. Among 49 publications that were identified, 2 were domestics, and the rest were foreign publications. These studies provided information on the molecular analysis of genes that cause congenital spinal deformities in humans and animals.
CONCLUSIONS: An analysis of the published research work on this topic indicates the presence of a significant effect of mutations in the TBX6 gene, leading to the appearance of congenital scoliosis.
Advances in elucidating the genetic contribution to the development of congenital spinal deformities and the molecular etiology of clinical phenotypes may uncover the opportunities for further refinement of the classification of signs of congenital scoliosis in accordance with the underlying genetic etiology.
Full Text
##article.viewOnOriginalSite##About the authors
Sergei E. Khalchitsky
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: s_khalchitski@mail.ru
ORCID iD: 0000-0003-1467-8739
SPIN-code: 2143-7822
PhD in Biological Sciences
Russian Federation, 64–68 Parkovaya str., Pushkin, Saint Petersburg, 196603Sergei V. Vissarionov
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048
SPIN-code: 7125-4930
Scopus Author ID: 6504128319
MD, PhD, D.Sc., Professor, Corresponding Member of RAS
Russian Federation, 64–68 Parkovaya str., Pushkin, Saint Petersburg, 196603Dmitry N. Kokushin
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: partgerm@yandex.ru
ORCID iD: 0000-0002-2510-7213
SPIN-code: 9071-4853
MD, PhD
Russian Federation, 64–68 Parkovaya str., Pushkin, Saint Petersburg, 196603Vladislav P. Muldiiarov
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Author for correspondence.
Email: muldiyarov@inbox.ru
ORCID iD: 0000-0002-3988-7193
SPIN-code: 5352-4041
MD, PhD student
Russian Federation, 64–68 Parkovaya str., Pushkin, Saint Petersburg, 196603Nikita O. Khusainov
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: nikita_husainov@mail.ru
ORCID iD: 0000-0003-3036-3796
SPIN-code: 8953-5229
MD, PhD
Russian Federation, 64–68 Parkovaya str., Pushkin, Saint Petersburg, 196603References
- Wang X, Yu Y, Yang N, Xia L. Incidence of intraspinal abnormalities in congenital scoliosis: a systematic review and meta-analysis. J Orthop Surg Res. 2020;15(1):485. doi: 10.1186/s13018-020-02015-8
- Tikoo A, Kothari MK, Shah K, Nene A. Current concepts − congenital scoliosis. Open Orthop J. 2017;11:337−345. doi: 10.2174/1874325001711010337
- Hensinger RN. Congenital scoliosis: etiology and associations. Spine (Phila Pa 1976). 2009;34(17):1745−1750. doi: 10.1097/BRS.0b013e3181abf69e
- Turnpenny PD, Alman B, Cornier AS, et al. Abnormal vertebral segmentation and the notch signaling pathway in man. Developmental Dynamics. 2007;236(6):1456–1474. DOI: 10.1002/ dvdy.21182
- Cunin V. Early-onset scoliosis: current treatment. Orthopaedics & traumatology, surgery & research: OTSR. 2015;101,1(Suppl):S109−118. doi: 10.1016/j.otsr.2014.06.032
- Vissarionov SV, Kokushin DN, Belyanchikov SM, Efremov AM. Surgical treatment of children with congenital deformity of the upper thoracic spine. Hirurgiâ pozvonočnika (Spine Surgery). 2011;(2):35−40. (In Russ.). doi: 10.14531/ss2011.2.35-40
- Vissarionov SV, Kartavenko KA, Kokushin DN. The natural course of congenital spinal deformity in children with isolated vertebral body malformation in the lumbar spine. Hirurgiâ pozvonočnika (Spine Surgery). 2018;15(1):6−17. doi: 10.14531/ss2018.1.6-17
- Pahys JM, Guille JT. What’s New in Congenital Scoliosis? J Pediatr Orthop. 2018;38(3):e172−e179. doi: 10.1097/bpo.0000000000000922
- Giampietro PF, Raggio CL, Blank RD, et al. Clinical, genetic and environmental factors associated with congenital vertebral malformations. Mol Syndromol. 2013;4(1-2):94−105. doi: 10.1159/000345329
- Takeda K, Kou I, Mizumoto S, et al. Screening of known disease genes in congenital scoliosis. Mol Genet Genomic Med. 2018;6(6):966−974. doi: 10.1002/mgg3.466
- Giampietro PF, Raggio CL, Reynolds CE, et al. An analysis of PAX1 in the development of vertebral malformations. Clin Genet. 2005;68(5):448−453. doi: 10.1111/j.1399-0004.2005.00520.x
- Bayrakli F, Guclu B, Yakicier C, et al. Mutation in MEOX1 gene causes a recessive Klippel-Feil syndrome subtype. BMC Genet. 2013;14:95. doi: 10.1186/1471-2156-14-95
- Dias AS, de Almeida I, Belmonte JM, et al. Somites without a clock. Science. 2014;343(6172):791−795. doi: 10.1126/science.1247575
- Thomsen B, Horn P, Panitz F, et al. A missense mutation in the bovine SLC35A3 gene, encoding a UDP-N-acetylglucosamine transporter, causes complex vertebral malformation. Genome Res. 2006;16(1):97−105. doi: 10.1101/gr.3690506
- Turnpenny PD, Sloman M, Dunwoodie S. Spondylocostal Dysostosis, Autosomal Recessive. GeneReviews®. Seattle; 2009.
- Kazaryan I, Vissarionov SV. Prediction of the course of congenital spinal deformities in children. Hirurgiâ pozvonočnika (Spine Surgery). 2014;(3):38−44. (In Russ.). doi: 10.14531/ss2014.3.38-44
- Bagnat M, Gray RS. Development of a straight vertebrate body axis. Development. 2020;147(21):dev175794. doi: 10.1242/dev.175794
- Wopat S, Bagwell J, Sumigray KD, et al. Spine patterning is guided by segmentation of the notochord sheath. Cell Rep. 2018;22(8):2026−2038. doi: 10.1016/j.celrep.2018.01.084
- Dequéant ML, Pourquié O. Segmental patterning of the vertebrate embryonic axis. Nat Rev Genet. 2008;9(5):370−382. doi: 10.1038/nrg2320
- Gamer LW, Wolfman NM, Celeste AJ. A novel BMP expressed in developing mouse limb, spinal cord, and tail bud is a potent mesoderm inducer in Xenopus embryos. Dev Biol. 1999;208(1):222–232. doi: 10.1006/dbio.1998.9191
- Beck C. Development of the vertebrate tailbud. Wiley Interdisciplinary Reviews: Developmental Biology. 2015;4(1):33−44. doi: 10.1002/wdev.163
- Christ B, Wilting J. From somites to vertebral column. Ann Anat. 1992;174:23–32. doi: 10.1016/s0940-9602(11)80337-7
- Baker RE, Schnell S, Maini PK. A clock and wavefront mechanism for somite formation. Dev Biol. 2006;293(1):116−126. doi: 10.1016/j.ydbio.2006.01.018
- Aulehla A, Herrmann BG. Segmentation in vertebrates: clock and gradient finally joined. Genes Dev. 2004;18(17):2060−2067. doi: 10.1101/gad.1217404
- Dubrulle J, McGrew MJ, Pourquie O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell. 2001;106:219–232. doi: 10.1016/s0092-8674(01)00437-8
- Takahashi Y, Koizumi K, Takagi A, et al. Mesp2 initiates somite segmentation through the Notch signalling pathway. Nat Genet. 2000;25(4):390−396. doi: 10.1038/78062
- Oginuma M, Niwa Y, Chapman DL, Saga Y. Mesp2 and Tbx6 cooperatively create periodic patterns coupled with the clock machinery during mouse somitogenesis. Development. 2008;135(15):2555−2562. doi: 10.1242/dev.019877
- Zhao W, Ajima R, Ninomiya Y, Saga Y. Segmental border is defined by Ripply2-mediated Tbx6 repression independent of Mesp2. Dev Biol. 2015;400(1):105−117. doi: 10.1016/j.ydbio.2015.01.020
- Chapman DL, Agulnik I, Hancock S, et al. Tbx6, a mouse T-Box gene implicated in paraxial mesoderm formation at gastrulation. Dev Biol. 1996;180(2):534−542. doi: 10.1006/dbio.1996.0326
- Papapetrou C, Putt W, Fox M, et al. The human TBX6 gene: cloning and assignment to chromosome 16p11.2. Genomics. 1999;55:238–241. doi: 10.1006/geno.1998.5646
- Chen W, Liu J, Yuan D, et al. Progress and perspective of TBX6 gene in congenital vertebral malformations. Oncotarget. 2016;7(35):57430−57441. doi: 10.18632/oncotarget.10619
- Yang N, Wu N, Zhang L, et al. TBX6 compound inheritance leads to congenital vertebral malformations in humans and mice. Hum Mol Genet. 2019;28(4):539−547. doi: 10.1093/hmg/ddy358
- Ghebranious N, Blank RD, Raggio CL, et al. A missense T (Brachyury) mutation contributes to vertebral malformations. J Bone Miner Res. 2008;23(10):1576−1583. doi: 10.1359/jbmr.080503
- White PH, Farkas DR, Chapman DL. Regulation of Tbx6 expression by Notch signaling. Genesis. 2005;42(2):61−70. doi: 10.1002/gene.20124
- Lefebvre M, Duffourd Y, Jouan T, et al. Autosomal recessive variations of TBX6, from congenital scoliosis to spondylocostal dysostosis. Clin Genet. 2017;91(6):908−912. doi: 10.1111/cge.12918
- Otomo N, Takeda K, Kawai S, et al. Bi-allelic loss of function variants of TBX6 causes a spectrum of malformation of spine and rib including congenital scoliosis and spondylocostal dysostosis. J Med Genet. 2019;56(9):622−628. doi: 10.1136/jmedgenet-2018-105920
- Sparrow DB, McInerney-Leo A, Gucev ZS, et al. Autosomal dominant spondylocostal dysostosis is caused by mutation in TBX6. Hum Mol Genet. 2013;22(8):1625–1631. doi: 10.1093/hmg/ddt012
- Fei Q, Wu Z, Wang H, et al. The association analysis of TBX6 polymorphism with susceptibility to congenital scoliosis in a Chinese Han population. Spine (Phila Pa 1976). 2010;35:983–988. doi: 10.1097/brs.0b013e3181bc963c
- Takeda K, Kou I, Kawakami N, et al. Compound heterozygosity for null mutations and a common hypomorphic risk haplotype in TBX6 causes congenital scoliosis. Hum Mutat. 2017;38:317−323. doi: 10.1002/humu.23168
- Gridley T. The long and short of it: somite formation in mice. Dev Dyn. 2006;235(9):2330−2336. doi: 10.1002/dvdy.20850
- Shimojima K, Inoue T, Fujii Y, et al. A familial 593-kb microdeletion of 16p11.2 associated with mental retardation and hemivertebrae. Eur J Med Genet. 2009;52:433–435. doi: 10.1016/j.ejmg.2009.09.007
- Wu X, Xu L, Li Y, et al. Submicroscopic aberrations of chromosome 16 in prenatal diagnosis. Mol Cytogenet. 2019;12:36. doi: 10.1186/s13039-019-0448-y
- Al-Kateb H, Khanna G, Filges I, et al. Scoliosis and vertebral anomalies: additional abnormal phenotypes associated with chromosome 16p11.2 rearrangement. Am J Med Genet A. 2014;164A:1118–1126. doi: 10.1002/ajmg.a.36401
- Baschal EE, Swindle K, Justice CM, et al. Sequencing of the TBX6 gene in families with familial idiopathic scoliosis. Spine Deformity. 2015;3(4):288–296. doi: 10.1016/j.jspd.2015.01.005
- Wu N, Ming X, Xiao J, et al. TBX6 null variants and a common hypomorphic allele in congenitalscoliosis. N Engl J Med. 2015;372(4):341−350. doi: 10.1056/nejmoa1406829
- Liu J, Wu N. TBX6-associated congenital scoliosis (TACS) as a clinically distinguishable subtype of congenital scoliosis: further evidence supporting the compound inheritance and TBX6 gene dosage model. Genet Med. 2019;21(7):1548−1558. doi: 10.1038/s41436-018-0377-x
- Chen W, Lin J, Wang L, et al. TBX6 missense variants expand the mutational spectrum in a non-Mendelian inheritance disease. Hum Mutat. 2020;41(1):182−195. doi: 10.1002/humu.23907
- Yang Y, Zhao S, Zhang Y, et al. Mutational burden and potential oligogenic model of TBX6-mediated genes in congenital scoliosis. Mol Genet Genomic Med. 2020;8(10):e1453. doi: 10.1002/mgg3.1453
- Feng X, Cheung JPY, Je JSH, et al. Genetic variants of TBX6 and TBXT identified in patients with congenital scoliosis in Southern China. J Orthop Res. 2021;39(5):971−988. doi: 10.1002/jor.24805
Supplementary files
