Experimental burn models for evaluating wound healing agents and its current situation and existing disadvantages: a literature review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Burns remain a crucial part of the structure of injuries in Russia and abroad. Therefore, providing high-quality medical care to burn victims is relevant. Despite the large number of proposed solutions to this condition, developments in the field of tissue engineering and medical materials science still lack standardization and consideration of specific features of animal burn models for their testing. Many studies showed minor and major disadvantages from a technical and descriptive point of view.

AIM: To analyze and identify the main disadvantages of existing burn models to assess the effect of wound healing agents.

MATERIALS AND METHODS: This article examines the search results in the databases Google Scholar and PubMed using the keywords “burns,” “rats,” “animal model,” and “wound healing.” Sixty publications were analyzed.

RESULTS: Seven quality criteria for the animal burn model have been determined, which allow obtaining reliable results and reproducing the described experiment: indication of the terms of quarantine and conditions of keeping laboratory animals, detailed description of the technique of applying burn injury, presence of one burn on a laboratory animal, presence of a control biopsy, indication of the absolute value of the initial burn area, presence of surgical treatment of burn wounds, and correct use of formulas for the planimetric assessment of wound healing.

CONCLUSIONS: A solution to the problem of creating a standardized model may be a more detailed description of techniques and following the proposed quality criteria.

About the authors

Yury A. Novosad

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: novosad.yur@yandex.ru
ORCID iD: 0000-0002-6150-374X
SPIN-code: 3001-1467

PhD student

Russian Federation, Saint Petersburg

Aleksandr Yu. Makarov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: makarov.alexandr97@mail.ru
ORCID iD: 0000-0002-1546-8517
SPIN-code: 1039-1096

MD

Russian Federation, Saint Petersburg

Kristina N. Rodionova

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Author for correspondence.
Email: rkn0306@mail.ru
ORCID iD: 0000-0001-6187-2097
SPIN-code: 4627-3979
Russian Federation, Saint Petersburg

Anton S. Shabunin

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: anton-shab@yandex.ru
ORCID iD: 0000-0002-8883-0580
SPIN-code: 1260-5644
Russian Federation, Saint Petersburg

Sergei V. Vissarionov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048
SPIN-code: 7125-4930

MD, PhD, Dr. Sci. (Medicine), Professor, Corresponding Member of RAS

Russian Federation, Saint Petersburg

References

  1. Samoilov AS, Astrelina TA, Aksenenko AV, et al. Application of cell technologies in thermal burn damage to skin (practical experience in State Research Center — Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency of Russia). Saratov Journal of Medical Scientific Research. 2019;15(4):999–1004. EDN: UAIRNP
  2. Legrand M, Barraud D, Constant I, et al. Management of severe thermal burns in the acute phase in adults and children. Anaesth Crit Care Pain Med. 2020;39(2):253–267. doi: 10.1016/j.accpm.2020.03.006
  3. Alekseev AA, Tyurnikov YuI. Main statistical indicators of the work of burn hospitals of the Russian Federation for 2015. Combustiology. 2016. N 56/57. (In Russ.)
  4. Surucu S, Sasmazel HT. Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds. Int J Biol Macromol. 2016;92:321–328. doi: 10.1016/j.ijbiomac.2016.07.013
  5. Fang Y, Zhu X, Wang N, et al. Biodegradable core-shell electrospun nanofibers based on PLA and γ-PGA for wound healing. Eur Polym J. 2019;116:30–37. doi: 10.1016/j.eurpolymj.2019.03.050
  6. Tan SH, Ngo ZH, Leavesley D, et al. Recent advances in the design of three-dimensional and bioprinted scaffolds for full-thickness wound healing. Tissue Eng Part B Rev. 2022;28(1):160–181. doi: 10.1089/ten.teb.2020.0339
  7. Choudhury S, Das A. Advances in generation of three-dimensional skin equivalents: pre-clinical studies to clinical therapies. Cytotherapy. 2021;23(1):1–9. doi: 10.1016/j.jcyt.2020.10.001
  8. Abdullahi A, Amini-Nik S, Jeschke MG. Animal models in burn research. Cell Mol Life Sci. 2014;71(17):3241–3255. doi: 10.1007/s00018-014-1612-5
  9. Dovnar RI. Nuances of the choice of experimental animals for modeling the healing process of the skin wound. Journal of the Grodno State Medical University. 2020;18(4):429–435. doi: 10.25298/2221-8785-2020-18-4-429-435
  10. Weber B, Lackner I, Haffner-Luntzer M, et al. Modeling trauma in rats: Similarities to humans and potential pitfalls to consider. J Transl Med. 2019;17(1):1–19. doi: 10.1186/s12967-019-2052-7
  11. Egro F, Repko A, Narayanaswamy V, et al. Soluble chitosan derivative treats wound infections and promotes wound healing in a novel MRSA-infected porcine partial-thickness burn wound model. PLoS One. 2022;17(10). doi: 10.1371/JOURNAL.PONE.0274455
  12. Blackstone BN, Kim JY, McFarland KL, et al. Scar formation following excisional and burn injuries in a red Duroc pig model. Wound Repair Regener. 2017;25(4):618–631. doi: 10.1111/WRR.12562
  13. Galiano RD, Michaels VJ, Dobryansky M, et al. Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regener. 2004;12(4):485–492. doi: 10.1111/J.1067-1927.2004.12404.X
  14. Davidson JM. Animal models for wound repair. Arch Dermatol Res. 1998;290(1). doi: 10.1007/pl00007448
  15. Zhou S, Wang W, Zhou S, et al. A novel model for cutaneous wound healing and scarring in the rat. Plast Reconstr Surg. 2019;143(2):468–477. doi: 10.1097/PRS.0000000000005274
  16. Shabunin AS, Yudin VE, Dobrovolskaya IP, et al. Composite wound dressing based on chitin/chitosan nanofibers: processing and biomedical applications. Cosmetics. 2019;6(1):16. doi: 10.3390/COSMETICS6010016
  17. Wu Y, Hong P, Liu P, et al. Lipoaspirate fluid derived factors and extracellular vesicles accelerate wound healing in a rat burn model. Front Bioeng Biotechnol. 2023;11. doi: 10.3389/FBIOE.2023.1185251/FULL
  18. Raji R, Miri MR, Raji A. Comparison of healing effects of aloe vera gel and aloe vera leaf pulp extract on burn-wound rats. J Int Life Sci Res. 2023;4(2):006–013. doi: 10.53771/ijlsra.2023.4.2.0047
  19. Yang C, Chen Y, Huang H, et al. ROS-Eliminating carboxymethyl chitosan hydrogel to enhance burn wound-healing efficacy. Front Pharmacol. 2021;12. doi: 10.3389/FPHAR.2021.679580/BIBTEX
  20. Khan A, Andleeb A, Azam M, et al. Aloe vera and ofloxacin incorporated chitosan hydrogels show antibacterial activity, stimulate angiogenesis and accelerate wound healing in full thickness rat model. J Biomed Mater Res B Appl Biomater. 2023;111(2):331–342. doi: 10.1002/JBM.B.35153
  21. Chou KC, Chen CT, Cherng JH, et al. Cutaneous regeneration mechanism of β-sheet silk fibroin in a rat burn wound healing model. Polymers. 2021;13(20):3537. doi: 10.3390/POLYM13203537
  22. Paramasivam T, Maiti SK, Palakkara S, et al. Effect of PDGF-B gene-activated acellular matrix and mesenchymal stem cell transplantation on full thickness skin burn wound in rat model. Tissue Eng Regen Med. 2021;18(2):235–251. doi: 10.1007/S13770-020-00302-3/METRICS
  23. Nie C, Yu H, Wang X, et al. Pro-inflammatory effect of obesity on rats with burn wounds. PeerJ. 2020;8. doi: 10.7717/PEERJ.10499/SUPP-1
  24. Shariati A, Moradabadi A, Azimi T, et al. Wound healing properties and antimicrobial activity of platelet-derived biomaterials. Sci Rep. 2020;10(1):1–9. doi: 10.1038/s41598-020-57559-w
  25. Wali N, Shabbir A, Wajid N, et al. Synergistic efficacy of colistin and silver nanoparticles impregnated human amniotic membrane in a burn wound infected rat model. Sci Rep. 2022;12. doi: 10.1038/s41598-022-10314-9
  26. Bakadia BM, Zhong A, Li X, et al. Biodegradable and injectable poly(vinyl alcohol) microspheres in silk sericin-based hydrogel for the controlled release of antimicrobials: application to deep full-thickness burn wound healing. Adv Compos Hybrid Mater. 2022;5(4):2847–2872. doi: 10.1007/S42114-022-00467-6/FIGURES/11
  27. Samdavid Thanapaul RJR, Ranjan A, Manikandan SK, et al. Efficacy of Lobelia alsinoides Lam ethanolic extract on a third-degree burn: an experimental study on rats. Dermatol Ther. 2020;33(6). doi: 10.1111/DTH.14242
  28. de Andrade ALM, Brassolatti P, Luna GF, et al. Effect of photobiomodulation associated with cell therapy in the process of cutaneous regeneration in third degree burns in rats. J Tissue Eng Regen Med. 2020;14(5):673–683. doi: 10.1002/TERM.3028
  29. Ketabchi N, Dinarvand R, Adabi M, et al. Study of third-degree burn wounds debridement and treatment by actinidin enzyme immobilized on electrospun chitosan/peo nanofibers in rats. Biointerface Res Appl Chem. 2020;11(3):10358–10370. doi: 10.33263/BRIAC113.1035810370
  30. Faryad Q, Fazal N, Ijaz B, et al. Adipose-derived stem cells (ADSCS) Pretreated with vascular endothelial growth facotr (VEGF) promoted wound healing in skin burn model. BCSRJ. 2022;2022(1):178. doi: 10.54112/bcsrj.v2022i1.178
  31. Soriano JL, Calpena AC, Rincon M, et al. Melatonin nanogel promotes skin healing response in burn wounds of rats. Nanomedicine. 2020;15(22):2133–2147. doi: 10.2217/NNM-2020-0193
  32. Elbialy ZI, Assar DH, Abdelnaby A, et al. Healing potential of Spirulina platensis for skin wounds by modulating bFGF, VEGF, TGF-ß1 and α-SMA genes expression targeting angiogenesis and scar tissue formation in the rat model. Biomed. Pharmacother. 2021;137. doi: 10.1016/J.BIOPHA.2021.111349
  33. Zhao F, Liu W, Yu Y, et al. Effect of small molecular weight soybean protein-derived peptide supplementation on attenuating burn injury-induced inflammation and accelerating wound healing in a rat model. RSC Adv. 2019;9(3):1247–1259. doi: 10.1039/C8RA09036J
  34. Lamaro-Cardoso A, Bachion MM, Morais JM, et al. Photobiomodulation associated to cellular therapy improve wound healing of experimental full thickness burn wounds in rats. J Photochem Photobiol B. 2019;194:174–182. doi: 10.1016/J.JPHOTOBIOL.2019.04.003
  35. Chakrabarti S, Mazumder B, Rajkonwar J, et al. bFGF and collagen matrix hydrogel attenuates burn wound inflammation through activation of ERK and TRK pathway. Sci Rep. 2021;11(1):3357. doi: 10.1038/s41598-021-82888-9
  36. Zinovev EV, Tsygan VN, Asadulaev MS, et al. Experimental evaluation of the effectiveness of adipogenic mesenchymal stem cells for the treatment of skin burns of III degree. Bulletin of the Russian Military Medical Academy. 2017;1(57):137–141. EDN: YJMGUD
  37. Porumb V, Trandabst AF, Terinte C, et al. Design and testing of an experimental steam-induced burn model in rats. Biomed Res Int. 2017; 2017. doi: 10.1155/2017/9878109
  38. Núñez SC, França CM, Silva DFT, et al. The influence of red laser irradiation timeline on burn healing in rats. Lasers Med Sci. 2013;28(2):633–641. doi: 10.1007/S10103-012-1105-4/METRICS
  39. Aliasl J, Barikbin B, Khoshzaban F, et al. Effect of Arnebia euchroma ointment on post-laser wound healing in rats. J Cosmet Laser Ther. 2014;17(1):41–45. doi: 10.3109/14764172.2014.968583
  40. da Silva Melo M, Alves LP, Fernandes AB, et al. LED phototherapy in full-thickness burns induced by CO2 laser in rats skin. Lasers Med Sci. 2018;33(7):1537–1547. doi: 10.1007/S10103-018-2515-8/METRICS
  41. Bilic I, Petri NM, Bezic J, et al. Effects of hyperbaric oxygen therapy on experimental burn wound healing in rats: a randomized controlled study. Undersea Hyperb Med. 2005;32(1):1–9.
  42. Alemzadeh E, Oryan A, Mohammadi AA. Hyaluronic acid hydrogel loaded by adipose stem cells enhances wound healing by modulating IL-1β, TGF-β1, and bFGF in burn wound model in rat. J Biomed Mater Res B Appl Biomater. 2020;108(2):555–567. doi: 10.1002/JBM.B.34411
  43. Lee Y, Ricky S, Lim TH, et al. Wound healing effect of nonthermal atmospheric pressure plasma jet on a rat burn wound model: a preliminary study. J Burn Care Res. 2019;40(6):923–929. doi: 10.1093/JBCR/IRZ120
  44. Akhoondinasab MR, Khodarahmi A, Akhoondinasab M, et al. Assessing effect of three herbal medicines in second and third degree burns in rats and comparison with silver sulfadiazine ointment. Burns. 2015;41(1):125–131. doi: 10.1016/J.BURNS.2014.04.001
  45. Teot L, Otman S, Brancati A, Mittermayr R. Burn wound healing: pathophysiology. In: Kamolz LP, Jeschke MG, Horch RE, et al. Handbook of burns. Vienna: Springer; 2012. doi: 10.1007/978-3-7091-0315-9_4
  46. Laksmitawati DR, Noor SU, Sumiyati Y, et al. The effect of mesenchymal stem cell-conditioned medium gel on burn wound healing in rat. Vet World. 2022;15(4):841–847. doi: 10.14202/VETWORLD.2022.841-847
  47. Shahraki M, Molaei MM, Kheirandish R, et al. The effect of liposome nanocarrier containing scrophularia striata extract on burn wound healing in rats. Iran J Vet Surg. 2021;16(2):115–127. doi: 10.30500/IVSA.2021.292376.1268
  48. Keshri GK, Kumar G, Sharma M, et al. Photobiomodulation effects of pulsed-NIR laser (810 nm) and LED (808 ± 3 nm) with identical treatment regimen on burn wound healing: a quantitative label-free global proteomic approach. J Photochem Photobiol. 2021;6. doi: 10.1016/J.JPAP.2021.100024
  49. Priyadarshi A, Keshri GK, Gupta A. Hippophae rhamnoides L. leaf extract diminishes oxidative stress, inflammation and ameliorates bioenergetic activation in full-thickness burn wound healing. Phytomed. Plus. 2022;2(3). doi: 10.1016/J.PHYPLU.2022.100292
  50. Weaver AJ, Brandenburg KS, Smith BW, et al. Comparative analysis of the host response in a rat model of deep-partial and full-thickness burn wounds with pseudomonas aeruginosa infection. Front Cell Infect Microbiol. 2020;9:466. doi: 10.3389/FCIMB.2019.00466/BIBTEX
  51. Madibally SV, Solomon V, Mitchell RN, et al. Influence of insulin therapy on burn wound healing in rats. J Surg Pathol. 2003;109(2):92–100. doi: 10.1016/S0022-4804(02)00036-7
  52. Zhang J, Li W, Ying Z, et al. Soybean protein-derived peptide nutriment increases negative nitrogen balance in burn injury-induced inflammatory stress response in aged rats through the modulation of white blood cells and immune factors. Food Nutr Res. 2020;64:1–13. doi: 10.29219/FNR.V64.3677
  53. Kirichenko AK, Bolshakov IN, Ali-Rizal AE, et al. Morphological study of burn wound healing with the use of collagen-chitosan wound dressing. Bull Exp Biol Med. 2013;154(5). doi: 10.1007/s10517-013-2031-6
  54. Motamed S, Taghiabadi E, Molaei H, et al. Cell-based skin substitutes accelerate regeneration of extensive burn wounds in rats. Am J Surg. 2017;214(4):762–769. doi: 10.1016/J.AMJSURG.2017.04.010
  55. Pourfath MR, Behzad-Behbahani A, Hashemi SS, et al. Monitoring wound healing of burn in rat model using human Wharton’s jelly mesenchymal stem cells containing cGFP integrated by lentiviral vectors. Iran J Basic Med Sci. 2018;21(1):70. doi: 10.22038/IJBMS.2017.19783.5212
  56. Gilpin DA. Calculation of a new Meeh constant and experimental determination of burn size. Burns. 1996;22(8):607–611. doi: 10.1016/S0305-4179(96)00064-2
  57. Zinoviev EV, Soloshenko VV, Kourov AS, et al. On the issue of tangential necrectomy in burn surgery (literature review). Medico-Biological and Socio-Psychological Issues of Safety in Emergency Situations. 2020;(3):24–35. doi: 10.25016/2541-7487-2020-0-3-24-35
  58. Liu Q, Huang Y, Lan Y, et al. Acceleration of skin regeneration in full-thickness burns by incorporation of bFGF-loaded alginate microspheres into a CMCS–PVA hydrogel. J Tissue Eng Regen Med. 2017;11(5):1562–1573. doi: 10.1002/TERM.2057
  59. Nazempour M, Mehrabani D, Mehdinavaz-Aghdam R, et al. The effect of allogenic human Wharton’s jelly stem cells seeded onto acellular dermal matrix in healing of rat burn wounds. J Cosmet Dermatol. 2020;19(4):995–1001. doi: 10.1111/JOCD.13109
  60. Shanmugarajan TS, Selvan NK, Uppuluri VNVA. Development and characterization of squalene-loaded topical agar-based emulgel scaffold: wound healing potential in full-thickness burn model. Int J Low Extrem Wounds. 2020;20(4):364–373. doi: 10.1177/1534734620921629

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Эко-Вектор

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».