Experimental burn models for evaluating wound healing agents and its current situation and existing disadvantages: a literature review
- Authors: Novosad Y.A.1, Makarov A.Y.1, Rodionova K.N.1, Shabunin A.S.1, Vissarionov S.V.1
-
Affiliations:
- H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
- Issue: Vol 12, No 3 (2024)
- Pages: 389-400
- Section: Scientific reviews
- URL: https://bakhtiniada.ru/turner/article/view/272899
- DOI: https://doi.org/10.17816/PTORS635258
- ID: 272899
Cite item
Abstract
BACKGROUND: Burns remain a crucial part of the structure of injuries in Russia and abroad. Therefore, providing high-quality medical care to burn victims is relevant. Despite the large number of proposed solutions to this condition, developments in the field of tissue engineering and medical materials science still lack standardization and consideration of specific features of animal burn models for their testing. Many studies showed minor and major disadvantages from a technical and descriptive point of view.
AIM: To analyze and identify the main disadvantages of existing burn models to assess the effect of wound healing agents.
MATERIALS AND METHODS: This article examines the search results in the databases Google Scholar and PubMed using the keywords “burns,” “rats,” “animal model,” and “wound healing.” Sixty publications were analyzed.
RESULTS: Seven quality criteria for the animal burn model have been determined, which allow obtaining reliable results and reproducing the described experiment: indication of the terms of quarantine and conditions of keeping laboratory animals, detailed description of the technique of applying burn injury, presence of one burn on a laboratory animal, presence of a control biopsy, indication of the absolute value of the initial burn area, presence of surgical treatment of burn wounds, and correct use of formulas for the planimetric assessment of wound healing.
CONCLUSIONS: A solution to the problem of creating a standardized model may be a more detailed description of techniques and following the proposed quality criteria.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Yury A. Novosad
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: novosad.yur@yandex.ru
ORCID iD: 0000-0002-6150-374X
SPIN-code: 3001-1467
PhD student
Russian Federation, Saint PetersburgAleksandr Yu. Makarov
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: makarov.alexandr97@mail.ru
ORCID iD: 0000-0002-1546-8517
SPIN-code: 1039-1096
MD
Russian Federation, Saint PetersburgKristina N. Rodionova
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Author for correspondence.
Email: rkn0306@mail.ru
ORCID iD: 0000-0001-6187-2097
SPIN-code: 4627-3979
Russian Federation, Saint Petersburg
Anton S. Shabunin
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: anton-shab@yandex.ru
ORCID iD: 0000-0002-8883-0580
SPIN-code: 1260-5644
Russian Federation, Saint Petersburg
Sergei V. Vissarionov
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048
SPIN-code: 7125-4930
MD, PhD, Dr. Sci. (Medicine), Professor, Corresponding Member of RAS
Russian Federation, Saint PetersburgReferences
- Samoilov AS, Astrelina TA, Aksenenko AV, et al. Application of cell technologies in thermal burn damage to skin (practical experience in State Research Center — Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency of Russia). Saratov Journal of Medical Scientific Research. 2019;15(4):999–1004. EDN: UAIRNP
- Legrand M, Barraud D, Constant I, et al. Management of severe thermal burns in the acute phase in adults and children. Anaesth Crit Care Pain Med. 2020;39(2):253–267. doi: 10.1016/j.accpm.2020.03.006
- Alekseev AA, Tyurnikov YuI. Main statistical indicators of the work of burn hospitals of the Russian Federation for 2015. Combustiology. 2016. N 56/57. (In Russ.)
- Surucu S, Sasmazel HT. Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds. Int J Biol Macromol. 2016;92:321–328. doi: 10.1016/j.ijbiomac.2016.07.013
- Fang Y, Zhu X, Wang N, et al. Biodegradable core-shell electrospun nanofibers based on PLA and γ-PGA for wound healing. Eur Polym J. 2019;116:30–37. doi: 10.1016/j.eurpolymj.2019.03.050
- Tan SH, Ngo ZH, Leavesley D, et al. Recent advances in the design of three-dimensional and bioprinted scaffolds for full-thickness wound healing. Tissue Eng Part B Rev. 2022;28(1):160–181. doi: 10.1089/ten.teb.2020.0339
- Choudhury S, Das A. Advances in generation of three-dimensional skin equivalents: pre-clinical studies to clinical therapies. Cytotherapy. 2021;23(1):1–9. doi: 10.1016/j.jcyt.2020.10.001
- Abdullahi A, Amini-Nik S, Jeschke MG. Animal models in burn research. Cell Mol Life Sci. 2014;71(17):3241–3255. doi: 10.1007/s00018-014-1612-5
- Dovnar RI. Nuances of the choice of experimental animals for modeling the healing process of the skin wound. Journal of the Grodno State Medical University. 2020;18(4):429–435. doi: 10.25298/2221-8785-2020-18-4-429-435
- Weber B, Lackner I, Haffner-Luntzer M, et al. Modeling trauma in rats: Similarities to humans and potential pitfalls to consider. J Transl Med. 2019;17(1):1–19. doi: 10.1186/s12967-019-2052-7
- Egro F, Repko A, Narayanaswamy V, et al. Soluble chitosan derivative treats wound infections and promotes wound healing in a novel MRSA-infected porcine partial-thickness burn wound model. PLoS One. 2022;17(10). doi: 10.1371/JOURNAL.PONE.0274455
- Blackstone BN, Kim JY, McFarland KL, et al. Scar formation following excisional and burn injuries in a red Duroc pig model. Wound Repair Regener. 2017;25(4):618–631. doi: 10.1111/WRR.12562
- Galiano RD, Michaels VJ, Dobryansky M, et al. Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regener. 2004;12(4):485–492. doi: 10.1111/J.1067-1927.2004.12404.X
- Davidson JM. Animal models for wound repair. Arch Dermatol Res. 1998;290(1). doi: 10.1007/pl00007448
- Zhou S, Wang W, Zhou S, et al. A novel model for cutaneous wound healing and scarring in the rat. Plast Reconstr Surg. 2019;143(2):468–477. doi: 10.1097/PRS.0000000000005274
- Shabunin AS, Yudin VE, Dobrovolskaya IP, et al. Composite wound dressing based on chitin/chitosan nanofibers: processing and biomedical applications. Cosmetics. 2019;6(1):16. doi: 10.3390/COSMETICS6010016
- Wu Y, Hong P, Liu P, et al. Lipoaspirate fluid derived factors and extracellular vesicles accelerate wound healing in a rat burn model. Front Bioeng Biotechnol. 2023;11. doi: 10.3389/FBIOE.2023.1185251/FULL
- Raji R, Miri MR, Raji A. Comparison of healing effects of aloe vera gel and aloe vera leaf pulp extract on burn-wound rats. J Int Life Sci Res. 2023;4(2):006–013. doi: 10.53771/ijlsra.2023.4.2.0047
- Yang C, Chen Y, Huang H, et al. ROS-Eliminating carboxymethyl chitosan hydrogel to enhance burn wound-healing efficacy. Front Pharmacol. 2021;12. doi: 10.3389/FPHAR.2021.679580/BIBTEX
- Khan A, Andleeb A, Azam M, et al. Aloe vera and ofloxacin incorporated chitosan hydrogels show antibacterial activity, stimulate angiogenesis and accelerate wound healing in full thickness rat model. J Biomed Mater Res B Appl Biomater. 2023;111(2):331–342. doi: 10.1002/JBM.B.35153
- Chou KC, Chen CT, Cherng JH, et al. Cutaneous regeneration mechanism of β-sheet silk fibroin in a rat burn wound healing model. Polymers. 2021;13(20):3537. doi: 10.3390/POLYM13203537
- Paramasivam T, Maiti SK, Palakkara S, et al. Effect of PDGF-B gene-activated acellular matrix and mesenchymal stem cell transplantation on full thickness skin burn wound in rat model. Tissue Eng Regen Med. 2021;18(2):235–251. doi: 10.1007/S13770-020-00302-3/METRICS
- Nie C, Yu H, Wang X, et al. Pro-inflammatory effect of obesity on rats with burn wounds. PeerJ. 2020;8. doi: 10.7717/PEERJ.10499/SUPP-1
- Shariati A, Moradabadi A, Azimi T, et al. Wound healing properties and antimicrobial activity of platelet-derived biomaterials. Sci Rep. 2020;10(1):1–9. doi: 10.1038/s41598-020-57559-w
- Wali N, Shabbir A, Wajid N, et al. Synergistic efficacy of colistin and silver nanoparticles impregnated human amniotic membrane in a burn wound infected rat model. Sci Rep. 2022;12. doi: 10.1038/s41598-022-10314-9
- Bakadia BM, Zhong A, Li X, et al. Biodegradable and injectable poly(vinyl alcohol) microspheres in silk sericin-based hydrogel for the controlled release of antimicrobials: application to deep full-thickness burn wound healing. Adv Compos Hybrid Mater. 2022;5(4):2847–2872. doi: 10.1007/S42114-022-00467-6/FIGURES/11
- Samdavid Thanapaul RJR, Ranjan A, Manikandan SK, et al. Efficacy of Lobelia alsinoides Lam ethanolic extract on a third-degree burn: an experimental study on rats. Dermatol Ther. 2020;33(6). doi: 10.1111/DTH.14242
- de Andrade ALM, Brassolatti P, Luna GF, et al. Effect of photobiomodulation associated with cell therapy in the process of cutaneous regeneration in third degree burns in rats. J Tissue Eng Regen Med. 2020;14(5):673–683. doi: 10.1002/TERM.3028
- Ketabchi N, Dinarvand R, Adabi M, et al. Study of third-degree burn wounds debridement and treatment by actinidin enzyme immobilized on electrospun chitosan/peo nanofibers in rats. Biointerface Res Appl Chem. 2020;11(3):10358–10370. doi: 10.33263/BRIAC113.1035810370
- Faryad Q, Fazal N, Ijaz B, et al. Adipose-derived stem cells (ADSCS) Pretreated with vascular endothelial growth facotr (VEGF) promoted wound healing in skin burn model. BCSRJ. 2022;2022(1):178. doi: 10.54112/bcsrj.v2022i1.178
- Soriano JL, Calpena AC, Rincon M, et al. Melatonin nanogel promotes skin healing response in burn wounds of rats. Nanomedicine. 2020;15(22):2133–2147. doi: 10.2217/NNM-2020-0193
- Elbialy ZI, Assar DH, Abdelnaby A, et al. Healing potential of Spirulina platensis for skin wounds by modulating bFGF, VEGF, TGF-ß1 and α-SMA genes expression targeting angiogenesis and scar tissue formation in the rat model. Biomed. Pharmacother. 2021;137. doi: 10.1016/J.BIOPHA.2021.111349
- Zhao F, Liu W, Yu Y, et al. Effect of small molecular weight soybean protein-derived peptide supplementation on attenuating burn injury-induced inflammation and accelerating wound healing in a rat model. RSC Adv. 2019;9(3):1247–1259. doi: 10.1039/C8RA09036J
- Lamaro-Cardoso A, Bachion MM, Morais JM, et al. Photobiomodulation associated to cellular therapy improve wound healing of experimental full thickness burn wounds in rats. J Photochem Photobiol B. 2019;194:174–182. doi: 10.1016/J.JPHOTOBIOL.2019.04.003
- Chakrabarti S, Mazumder B, Rajkonwar J, et al. bFGF and collagen matrix hydrogel attenuates burn wound inflammation through activation of ERK and TRK pathway. Sci Rep. 2021;11(1):3357. doi: 10.1038/s41598-021-82888-9
- Zinovev EV, Tsygan VN, Asadulaev MS, et al. Experimental evaluation of the effectiveness of adipogenic mesenchymal stem cells for the treatment of skin burns of III degree. Bulletin of the Russian Military Medical Academy. 2017;1(57):137–141. EDN: YJMGUD
- Porumb V, Trandabst AF, Terinte C, et al. Design and testing of an experimental steam-induced burn model in rats. Biomed Res Int. 2017; 2017. doi: 10.1155/2017/9878109
- Núñez SC, França CM, Silva DFT, et al. The influence of red laser irradiation timeline on burn healing in rats. Lasers Med Sci. 2013;28(2):633–641. doi: 10.1007/S10103-012-1105-4/METRICS
- Aliasl J, Barikbin B, Khoshzaban F, et al. Effect of Arnebia euchroma ointment on post-laser wound healing in rats. J Cosmet Laser Ther. 2014;17(1):41–45. doi: 10.3109/14764172.2014.968583
- da Silva Melo M, Alves LP, Fernandes AB, et al. LED phototherapy in full-thickness burns induced by CO2 laser in rats skin. Lasers Med Sci. 2018;33(7):1537–1547. doi: 10.1007/S10103-018-2515-8/METRICS
- Bilic I, Petri NM, Bezic J, et al. Effects of hyperbaric oxygen therapy on experimental burn wound healing in rats: a randomized controlled study. Undersea Hyperb Med. 2005;32(1):1–9.
- Alemzadeh E, Oryan A, Mohammadi AA. Hyaluronic acid hydrogel loaded by adipose stem cells enhances wound healing by modulating IL-1β, TGF-β1, and bFGF in burn wound model in rat. J Biomed Mater Res B Appl Biomater. 2020;108(2):555–567. doi: 10.1002/JBM.B.34411
- Lee Y, Ricky S, Lim TH, et al. Wound healing effect of nonthermal atmospheric pressure plasma jet on a rat burn wound model: a preliminary study. J Burn Care Res. 2019;40(6):923–929. doi: 10.1093/JBCR/IRZ120
- Akhoondinasab MR, Khodarahmi A, Akhoondinasab M, et al. Assessing effect of three herbal medicines in second and third degree burns in rats and comparison with silver sulfadiazine ointment. Burns. 2015;41(1):125–131. doi: 10.1016/J.BURNS.2014.04.001
- Teot L, Otman S, Brancati A, Mittermayr R. Burn wound healing: pathophysiology. In: Kamolz LP, Jeschke MG, Horch RE, et al. Handbook of burns. Vienna: Springer; 2012. doi: 10.1007/978-3-7091-0315-9_4
- Laksmitawati DR, Noor SU, Sumiyati Y, et al. The effect of mesenchymal stem cell-conditioned medium gel on burn wound healing in rat. Vet World. 2022;15(4):841–847. doi: 10.14202/VETWORLD.2022.841-847
- Shahraki M, Molaei MM, Kheirandish R, et al. The effect of liposome nanocarrier containing scrophularia striata extract on burn wound healing in rats. Iran J Vet Surg. 2021;16(2):115–127. doi: 10.30500/IVSA.2021.292376.1268
- Keshri GK, Kumar G, Sharma M, et al. Photobiomodulation effects of pulsed-NIR laser (810 nm) and LED (808 ± 3 nm) with identical treatment regimen on burn wound healing: a quantitative label-free global proteomic approach. J Photochem Photobiol. 2021;6. doi: 10.1016/J.JPAP.2021.100024
- Priyadarshi A, Keshri GK, Gupta A. Hippophae rhamnoides L. leaf extract diminishes oxidative stress, inflammation and ameliorates bioenergetic activation in full-thickness burn wound healing. Phytomed. Plus. 2022;2(3). doi: 10.1016/J.PHYPLU.2022.100292
- Weaver AJ, Brandenburg KS, Smith BW, et al. Comparative analysis of the host response in a rat model of deep-partial and full-thickness burn wounds with pseudomonas aeruginosa infection. Front Cell Infect Microbiol. 2020;9:466. doi: 10.3389/FCIMB.2019.00466/BIBTEX
- Madibally SV, Solomon V, Mitchell RN, et al. Influence of insulin therapy on burn wound healing in rats. J Surg Pathol. 2003;109(2):92–100. doi: 10.1016/S0022-4804(02)00036-7
- Zhang J, Li W, Ying Z, et al. Soybean protein-derived peptide nutriment increases negative nitrogen balance in burn injury-induced inflammatory stress response in aged rats through the modulation of white blood cells and immune factors. Food Nutr Res. 2020;64:1–13. doi: 10.29219/FNR.V64.3677
- Kirichenko AK, Bolshakov IN, Ali-Rizal AE, et al. Morphological study of burn wound healing with the use of collagen-chitosan wound dressing. Bull Exp Biol Med. 2013;154(5). doi: 10.1007/s10517-013-2031-6
- Motamed S, Taghiabadi E, Molaei H, et al. Cell-based skin substitutes accelerate regeneration of extensive burn wounds in rats. Am J Surg. 2017;214(4):762–769. doi: 10.1016/J.AMJSURG.2017.04.010
- Pourfath MR, Behzad-Behbahani A, Hashemi SS, et al. Monitoring wound healing of burn in rat model using human Wharton’s jelly mesenchymal stem cells containing cGFP integrated by lentiviral vectors. Iran J Basic Med Sci. 2018;21(1):70. doi: 10.22038/IJBMS.2017.19783.5212
- Gilpin DA. Calculation of a new Meeh constant and experimental determination of burn size. Burns. 1996;22(8):607–611. doi: 10.1016/S0305-4179(96)00064-2
- Zinoviev EV, Soloshenko VV, Kourov AS, et al. On the issue of tangential necrectomy in burn surgery (literature review). Medico-Biological and Socio-Psychological Issues of Safety in Emergency Situations. 2020;(3):24–35. doi: 10.25016/2541-7487-2020-0-3-24-35
- Liu Q, Huang Y, Lan Y, et al. Acceleration of skin regeneration in full-thickness burns by incorporation of bFGF-loaded alginate microspheres into a CMCS–PVA hydrogel. J Tissue Eng Regen Med. 2017;11(5):1562–1573. doi: 10.1002/TERM.2057
- Nazempour M, Mehrabani D, Mehdinavaz-Aghdam R, et al. The effect of allogenic human Wharton’s jelly stem cells seeded onto acellular dermal matrix in healing of rat burn wounds. J Cosmet Dermatol. 2020;19(4):995–1001. doi: 10.1111/JOCD.13109
- Shanmugarajan TS, Selvan NK, Uppuluri VNVA. Development and characterization of squalene-loaded topical agar-based emulgel scaffold: wound healing potential in full-thickness burn model. Int J Low Extrem Wounds. 2020;20(4):364–373. doi: 10.1177/1534734620921629
Supplementary files
