Hallux valgus in children. Biomechanical aspect: A literature review

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

BACKGROUND: The study comprehensively describes the issues of the normal biomechanics of the first toe, first metatarsophalangeal joint, and first ray when walking. Understanding the fundamental processes of the functioning of these structures is a leading aspect in the study of the etiopathogenesis of hallux valgus and is important in treatment planning.

AIM: To analyze the literature concerning the kinematic and kinetic indicators of the first toe, first metatarsophalangeal joint, and first ray of the foot when walking in the final support phase.

MATERIALS AND METHODS: The characteristics of periods, gait phases, kinetic and kinematic movements were analyzed.

RESULTS: To perform a “push-off” when walking, sufficient extension of the first toe in the first metatarsophalangeal joint is necessary, which is fully accomplished only in combination with flexion and eversion of the first ray of the foot. Muscular control of the position of the first toe in the first metatarsophalangeal joint is carried out by the short and long flexors of the first toe with the sesamoid apparatus of the first metatarsal bone, whereas functions of the first ray and midfoot joints are stabilized by the peroneus longus muscle.

CONCLUSIONS: The influence of kinematic and kinetic indicators of movements in the lower-limb joints in the horizontal plane on the flexion of the first ray and extension of the first toe in the metatarsophalangeal joint and the determination of the nature and volume of movements in midfoot joints in various phases of the gait cycle remains a pressing issue.

作者简介

Valery Umnov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: umnovvv@gmail.com
ORCID iD: 0000-0002-5721-8575
SPIN 代码: 6824-5853

MD, PhD, Dr. Sci. (Med.)

俄罗斯联邦, Saint Petersburg

Dmitriy Zharkov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: striker5621@gmail.com
ORCID iD: 0000-0002-8027-1593

MD, orthopedic and trauma surgeon

俄罗斯联邦, 64-68 Parkovaya str., Pushkin, Saint Petersburg, 196603

Vladimir Novikov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: novikov.turner@gmail.com
ORCID iD: 0000-0002-3754-4090
SPIN 代码: 2773-1027

MD, PhD, Cand. Sci. (Med.)

俄罗斯联邦, 64-68 Parkovaya str., Pushkin, Saint Petersburg, 196603

Dmitriy Umnov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

编辑信件的主要联系方式.
Email: dmitry.umnov@gmail.com
ORCID iD: 0000-0003-4293-1607
SPIN 代码: 1376-7998

MD, PhD, Cand. Sci. (Med.)

俄罗斯联邦, 64-68 Parkovaya str., Pushkin, Saint Petersburg, 196603

参考

  1. Elton PJ, Sanderson SP. A chiropodial survey of elderly persons over 65 years in the community. Chiropodist. 1987;5:175–178.
  2. Craigmile DM. Incidence, origin and prevention of certain foot defects. Br Med J. 1953;2(4839):749–752. doi: 10.1136/bmj.2.4839.749
  3. Hung LK, Ho YF, Leung PC. Survey of foot deformity among 166 geriatric in-patients. Foot Ankle. 1985;5(4):156–164. doi: 10.1177/107110078500500402
  4. Kilmartin TE, Barrington RL, Wallace WA. A controlled prospective trial of a foot orthosis for juvenile hallux valgus. J Bone Joint Surg Br. 1994;76(2):210–214.
  5. Nix S, Smith M, Vicenzino B. Prevalence of hallux valgus in the general population: a systematic review and meta-analysis. J Foot Ankle Res. 2010;3:21. doi: 10.1186/1757-1146-3-21
  6. Janura M, Cabell L, Svoboda Z, et al. Kinematic analysis of gait inpatients with juvenile Hallux Valgus deformity. J Biomech Sci Eng. 2008;3(3):390–398. doi: 10.1299/jbse.3.390
  7. Harkless LB, Krych SM. Handbook of common foot problems. New York: Churchill Livingstone, 1990.
  8. Coughlin MJ, Roger A. Mann Award. Juvenile hallux valgus: etiology and treatment. Foot Ankle Int. 1995;16(11):682–697. doi: 10.1177/107110079501601104.
  9. Louwerens JW, Schrier JC. Rheumatoid forefoot deformity: pathophysiology, evaluation and operative treatment options. Int Orthop. 2013;37(9):1719–1729. doi: 10.1007/s00264-013-2014-2
  10. Matricali GA, Boonen A, Verduyckt J, et al. The presence of forefoot problems and the role of surgery in patients with rheumatoid arthritis. Ann Rheum Dis. 2006;65(9):1254–1255. doi: 10.1136/ard.2005.050823
  11. Johal S, Sawalha S, Pasapula C. Post-traumatic acute hallux valgus: a case report. Foot (Edinb). 2010;20(2–3):87–89. doi: 10.1016/j.foot.2010.05.001
  12. Bohay DR, Johnson KD, Manoli A. The traumatic bunion. Foot Ankle Int. 1996;17(7):383–387. doi: 10.1177/107110079601700705
  13. Fabeck LG, Zekhnini C, Farrokh D, et al. Traumatic hallux valgus following rupture of the medial collateral ligament of the first metatarsophalangeal joint: a case report. J Foot Ankle Surg. 2002;41(2):125–128. doi: 10.1016/s1067-2516(02)80037-0
  14. Ferreyra M, Núñez-Samper M, Viladot R, et al. What do we know about hallux valgus pathogenesis? Review of the different theories. J Foot Ankle. 2020;14(3):223–230. doi: 10.30795/jfootankle.2020.v14.1202
  15. Perera AM, Mason L, Stephens MM. The pathogenesis of hallux valgus. J Bone Joint Surg Am. 2011;93(17):1650–1661. doi: 10.2106/JBJS.H.01630
  16. Perry J. Gait analysis: normal and pathological function. New York: SLACK;1992.
  17. David A. Winter. The biomechanics and motor control of human gait: normal, elderly and pathological. Waterloo: University of Waterloo Press; 1991.
  18. Vitenzon AS. Patterns of normal and pathological human walking. Moscow: TsNIIPP; 1998. (In Russ.)
  19. Bernstein NA. Research on the biodynamics of locomotion. Book one. Moscow, Publishing House of the All-Union Institute of Experimental Medicine; 1935. (In Russ.)
  20. Stokes IA, Hutton WC, Stott JR. Forces acting on the metatarsals during normal walking. J Anat. 1979;129(Pt. 3):579–590.
  21. Hutton WC, Dhanendran M. The mechanics of normal and hallux valgus feet – a quantitative study. Clin Orthop Relat Res. 1981;157:7–13.
  22. Valmassy RL. Clinical biomechanics of the lower extremities. Mosby; 1994.
  23. Hicks JH. The mechanics of the foot. I. The joints. J Anat. 1953;87(4):345–357.
  24. D’Amico JC, Schuster RO. Motion of the first ray: clarification through investigation. J Am Podiatry Assoc. 1979;69(1):17–23. doi: 10.7547/87507315-69-1-17
  25. Broca P. Des difformités de la partieantérieure du pied produitepar faction de la chaussure. Bull Soc Anat. 1852;27:60–67.
  26. Saltzman CL, Brandser EA, Anderson CM, et al. Coronal plane rotation of the first metatarsal. Foot Ankle Int. 1996;17(3):157–161. doi: 10.1177/107110079601700307
  27. Ebisui JM. The first ray axis and the first metatarsophalangeal joint: an anatomical and pathomechanical study. J Am Podiatry Assoc. 1968;58(4):160–168. doi: 10.7547/87507315-58-4-160
  28. Sgarlato TE. A compendium of podiatric biomechanics. San Francisco: California College of Podiatric Medicine; 1971.
  29. Kelso SF, Richie DH Jr, Cohen IR, et al. Direction and range of motion of the first ray // J Am Podiatry Assoc. 1982;72(12):600–605. doi: 10.7547/87507315-72-12-600
  30. Grode S, McCarthy DJ. The anatomical implications of hallux abducto valgus: a cryomicrotomy study. J Am Podiatry Assoc. 1980;70(11):539–551. doi: 10.7547/87507315-70-11-539
  31. Root ML. Direction and range of motion of the first ray. J Am Podiatric Med Assoc. 1982;72:600.
  32. Root ML, Orient WP, Weed JH. Normal and abnormal function of the foot. Los Angeles: Clinical biomechanics Corp.; 1977.
  33. Wanivenhaus A, Pretterklieber M. First tarsometatarsal joint: anatomical biomechanical study. Foot Ankle. 1989;9(4):153–157. doi: 10.1177/107110078900900401
  34. Ouzounian T, Shereff M. In vitro determination of midfoot motion. Foot Ankle. 1989;10(3):140–146. doi: 10.1177/107110078901000305
  35. Oldenbrook LL, Smith CE. Metatarsal head motion secondary to rearfoot pronation and supination. J Am Podiatric Med Assoc. 1979;69(1):24–28. doi: 10.7547/87507315-69-1-24
  36. Kelikian H. Hallux valgus, allied deformities of the forefoot and metatarsalgia. Philadelphia and London: W.B. Saunders Company; 1965.
  37. Heatherington VJ, Carnelt J, Patterson B. Motion of the first metatarsophalangeal. J Foot Surg. 1989;28(1):13–19.
  38. Dykyj D. Pathologic anatomy of hallux abducto valgus. Clin Podiatr Med Surg. 1989;6:1–14.
  39. Shereff MJ, Bejani FJ, Kummer FJ. Kinematics of the first metatarsophalangeal joint. J Bone Joint Surg. 1986;68(3):392–398.
  40. Nawoczenski DA, Baumhauer JF, Umberger BR. Relationship between clinical measurements and motion of the first metatarsophalangeal joint during gait. J Bone Joint Surg Am. 1999;81(3):370–376. doi: 10.2106/00004623-199903000-00009
  41. Mann R, Nagy J. The function of the toes in walking, jogging and running. Clin Orthop. 1979;(142):24–29.
  42. Giannestras N. Foot disorders, medical and surgical management. Philadelphia: Lea and Febiger; 1973.
  43. Joseph J. Range of movement of the great toe in men. J Bone Joint Surg [Br.]. 1954;36(3):450–457. doi: 10.1302/0301-620X.36B3.450
  44. Gerbert J. Textbook of Bunion Surgery. New York: Futura; 1981.
  45. Buell T, Green DR, Risser J. Measurement of the first metatarsophalangeal joint range of motion. J Am Podiatr Med Assoc. 1988;78(9):439–448. doi: 10.7547/87507315-78-9-439
  46. Heatherington VJ, Johnson R, Arbitton J. Necessary dorsoflexion of the first metatarsophalangeal joint during gait. J Foot Surg. 1990;29(3):218–222.
  47. Bojsen-Moller F, Lamoreux L. Significance of free dorsoflexion of the toes in walking. Acta Orthop Scand. 1979;50(4):411–479. doi: 10.3109/17453677908989792
  48. Mishra AK, Kumar R, Kataria C. et al. A comparison of foot insole materials in plantar pressure relief and center of pressure pattern. J Clin Med Res. 2020;2(6):P1–17. doi: 10.37191/Mapsci-2582-4333-2(6)-050
  49. Stokes IA, Stott JR, Hutton WC. Force distributions under the foot a dynamic measuring system. Biomed Eng. 1974;9(4):140–143.
  50. Hessert MJ, Vyas M, Leach J, et al. Foot pressure distribution during walking in young and old adults. BMC Geriatr. 2005;5:8. doi: 10.1186/1471-2318-5-8
  51. Grieve DW, Rashdi T. Pressures under normal feet in standing and walking as measured by foil pedobarography. Ann Rheum Dis. 1984;43(6):816–818. doi: 10.1136/ard.43.6.816
  52. Hughes J, Jagoe JR, Clark P, et al. Pattern recognition of images of the pressure distribution under the foot from the pedobarograph. J Photog Science. 1989;37(3–4):139–142. doi: 10.1080/00223638.1989.11737030
  53. Hughes J, Kriss S, Klenerman L. A clinician’s view of foot pressure: a comparison of three different methods of measurement. Foot Ankle. 1987;7(5):277–284. doi: 10.1177/107110078700700503
  54. David RD, Delagoutte JP, Renard MM. Anatomical study of the sesamoid bones of the first metatarsal. J Am Podiatr Med Assoc. 1989;79(11):536–544. doi: 10.7547/87507315-79-11-536
  55. Michaud T. Foot orthoses and other forms of conservative foot care. Philadelphia: William and Wilkins, 1993.
  56. MacConaill MA. Some anatomical factors affecting the stabilising functions of muscles. Ir J Med Sci. 1946:160–164. doi: 10.1007/BF02950588
  57. Kravitz SR, LaPorta GA, Lawton JH. KLL progressive staging classification of hallux limitus and hallux rigidus. Lower extremity. 1994;1(1):55–66.
  58. MacConaill MA, Basmajian JV. Muscles and movements: a basis for human kinesiology. Philadelphia: Williams and Wilkins; 1969.
  59. Elftman H. The transverse tarsal joint and its control. Clin Orthop. 1960;16:41–45.
  60. Sammarco VJ. The talonavicular and calcaneocuboid joints: anatomy, biomechanics, and clinical management of the transverse tarsal joint. Foot Ankle Clin. 2004;9(1):127–145. doi: 10.1016/S1083-7515(03)00152-9
  61. Sarrafian SK. Anatomy of the foot and ankle: descriptive, topographic, functional. Philadelphia: Williams and Wilkins; 1993.
  62. Blackwood CB, Yuen TJ, Sangeorzan BJ, et al. The midtarsal joint locking mechanism. Foot Ankle Int. 2005;26(12):1074–1080. doi: 10.1177/107110070502601213
  63. Johnson CH, Christensen JC. Biomechanics of the first ray. Part I. The effects of peroneus longus function: a three-dimensional kinematic study on a cadaver model. J Foot Ankle Surg. 1999;38(5):313–321. doi: 10.1016/s1067-2516(99)80002-7
  64. Rajendran K. Mechanism of locking at the knee joint. J Anat. 1985;143:189–194.
  65. Perez HR, Reber LK, Christensen JC. The effect of frontal plane position on first ray motion: forefoot locking mechanism. Foot Ankle Int. 2008;29(1):72–76. doi: 10.3113/FAI.2008.0072
  66. Hicks JH. The mechanics of the foot. II. The plantar aponeurosis and the arch. J Anat. 1954;88(1):25–30.
  67. Phillips RD, Law EA, Ward ED. Functional motion of the medial column joints of the foot during propulsion. J Am Podiatr Med Assoc. 1996;86(10):474–486. doi: 10.7547/87507315-86-10-474

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Phases of terminal support (a) and preswing (b). The black line indicates the vector of the support reaction forces, or the vector of the body

下载 (70KB)
3. Fig. 2. Axis of movement of the first ray: a, horizontal plane; b, frontal plane (Michaud T. Foot orthosis. Baltimore, 1993; [55], with modifications)

下载 (80KB)
4. Fig. 3. Movement of the first ray: a, horizontal plane; b, sagittal plane

下载 (108KB)
5. Fig. 4. Sesamoid apparatus of the foot. L, lateral sesamoid bone; M, medial sesamoid bone

下载 (224KB)
6. Fig. 5. Projection of the centers of rotation of the first metatarsophalangeal joint (a) (1–4), rotational movement of the head of the first metatarsal bone (b), sliding movement of the head of the metatarsal bone (c), and compressive movement of the first metatarsal bone head (d) (Ronald L. Valmassy. 1994, [22], with modifications)

下载 (122KB)
7. Fig. 6. Projection of the center of pressure on the foot during normal walking according to A.K. Mishra [48]. The solid line is the evaluated limb, and the dotted line is the contralateral limb (Ronald L. Valmassy. 1994, [22], with modifications)

下载 (84KB)
8. Fig. 7. Function of the short and long flexors and short and long extensors of the first toe in the midstance phase (a). During this phase, the projection of the ground reaction force vector is located behind the first metatarsophalangeal joint and does not have any effect on it. The localization of the first toe on the surface neutralizes the flexion torque of the center of gravity of the first toe and determines the stabilizing effect of the flexors and extensors of the first toe of the proximal phalanx of the first toe against the head of the first metatarsal bone. The function of the long flexor of the first toe, short flexor of the first toe, and sesamoid apparatus in the third rocker phase (b). The vector of ground reaction forces is located anterior to the first metatarsophalangeal joint, creating an effective extension torque lever. The sesamoid bones and the displacement of the center of rotation of the first metatarsophalangeal joint to the anterosuperior parts of the head increase the flexion torque of the short flexor of the first toe, which provides active counteraction to the passive extensor action of the ground reaction forces. The blue line indicates the torque lever arm of the center of gravity of the first toe, the green line indicates the torque lever arm of the short extensor of the first toe, the brown line indicates the torque lever arm of the extensor muscles of the first toe, and the gray line indicates the torque lever arm of the ground reaction forces

下载 (294KB)
9. Fig. 8. Position of the first ray and foot in the loading response and initial midstance phases in the sagittal and frontal planes (a, b). Position of the first ray and foot in terminal stance and preswing phases in the sagittal and frontal planes (c, d). Explanations are given in the text

下载 (500KB)
10. Fig. 9. Mechanism for blocking the first ray of the foot. See text for explanations

下载 (119KB)
11. Fig. 10. Location of the axes of the first toe abductor and peroneus longus relative to the resulting axis of movement of the first ray of the foot. See text for explanations

下载 (134KB)

版权所有 © Эко-Вектор, 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».