Neurogenic heterotopic ossification: A review. Part 1
- Authors: Khodorovskaya A.M.1, Novikov V.A.1, Umnov V.V.1, Zvozil A.V.1, Melchenko E.V.1, Umnov D.V.1, Zharkov D.S.1, Barlova O.V.1, Krasulnikova E.A.2, Zakharov F.A.2
-
Affiliations:
- H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
- North-Western State Medical University named after I.I. Mechnikov
- Issue: Vol 11, No 3 (2023)
- Pages: 393-404
- Section: Scientific reviews
- URL: https://bakhtiniada.ru/turner/article/view/148241
- DOI: https://doi.org/10.17816/PTORS453731
- ID: 148241
Cite item
Abstract
BACKGROUND: Heterotopic ossification is the formation of bone tissues in the soft tissues of the body. A distinct form of heterotopic ossification is neurogenic, that is, resulting from severe injury to the brain or spinal cord of different genesis. Neurogenic heterotopic ossification is a complex multifactorial process of differentiated bone formation in the paraarticular soft tissues of large joints. Heterotopic ossification leads to the formation of persistent contractures and ankylosis, which cause severe disability and complicate rehabilitation.
AIM: To analyze publications dealing with various aspects of neurogenic heterotopic ossification.
MATERIALS AND METHODS: In the first part of our review, we present the results of the literature analysis on the epidemiology, risk factors, pathogenesis, and clinic and laboratory diagnosis of neurogenic heterotopic ossification. Scientific literature databases PubMed, Google Scholar, Cochrane Library, Crossref, and eLibrary were searched for without language limitations.
RESULTS: Current literature data on heterotopic ossification in patients with central nervous system pathologies are presented. Topical questions of etiology, risk factors, pathogenesis, and clinic and laboratory diagnostics of this pathological process are highlighted.
CONCLUSIONS: Understanding the risk factors of heterotopic ossification development and their prevention in the context of the modern knowledge of heterotopic ossification pathogenesis may help reduce the incidence of heterotopic ossification in patients with severe central nervous system injury.
Full Text
##article.viewOnOriginalSite##About the authors
Alina M. Khodorovskaya
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: alinamyh@gmail.com
ORCID iD: 0000-0002-2772-6747
SPIN-code: 3348-8038
ResearcherId: HLH-5742-2023
MD, Research Associate
Russian Federation, Saint PetersburgVladimir A. Novikov
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: novikov.turner@gmail.com
ORCID iD: 0000-0002-3754-4090
SPIN-code: 2773-1027
Scopus Author ID: 57193252858
MD, PhD, Cand. Sci. (Med.)
Russian Federation, Saint PetersburgValery V. Umnov
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: umnovvv@gmail.com
ORCID iD: 0000-0002-5721-8575
SPIN-code: 6824-5853
MD, PhD, Dr. Sci. (Med.)
Russian Federation, Saint PetersburgAlexey V. Zvozil
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: zvozil@mail.ru
ORCID iD: 0000-0002-5452-266X
MD, PhD, Cand. Sci. (Med.)
Russian Federation, Saint PetersburgEvgenii V. Melchenko
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: emelchenko@gmail.com
ORCID iD: 0000-0003-1139-5573
SPIN-code: 1552-8550
Scopus Author ID: 55022869800
MD, PhD, Cand. Sci. (Med.)
Russian Federation, Saint PetersburgDmitriy V. Umnov
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: dmitry.umnov@gmail.com
ORCID iD: 0000-0003-4293-1607
SPIN-code: 1376-7998
MD, PhD, Cand. Sci. (Med.)
Russian Federation, Saint PetersburgDmitriy S. Zharkov
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: striker5621@gmail.com
ORCID iD: 0000-0002-8027-1593
MD, orthopedic and trauma surgeon
Russian Federation, Saint PetersburgOlga V. Barlova
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: barlovaolga@gmail.com
ORCID iD: 0000-0002-0184-135X
MD, PhD, Cand. Sci. (Med.)
Russian Federation, Saint PetersburgElizaveta A. Krasulnikova
North-Western State Medical University named after I.I. Mechnikov
Email: Ikrasulnikova63@mail.ru
3rd year student
Russian Federation, Saint PetersburgFedor A. Zakharov
North-Western State Medical University named after I.I. Mechnikov
Author for correspondence.
Email: zakfedya@yandex.ru
3rd year student
Russian Federation, Saint PetersburgReferences
- Zaytsev AY, Bryukhovetsky AS. Neuroregenerative therapy of spinal cord trauma: role and perspectives of stem cells transplantation. Genes & Cells. 2007;2(1):36–44. (In Russ.)
- Sullivan MP, Torres SJ, Mehta S, et al. Heterotopic ossification after central nervous system trauma: a current review. Bone Joint Res. 2013;2(3):51–57. doi: 10.1302/2046-3758.23.2000152
- Meyers C, Lisiecki J, Miller S, et al. Heterotopic ossification: a comprehensive review. JBMR Plus. 2019;3(4). doi: 10.1002/jbm4.10172
- Deev RV, Plaksa IL, Baranich AV, et al. Osteogenesis in epitelial tumors on the example of a pilomatricomas. Genes & Cells. 2020;15(1):60–65. (In Russ.) doi: 10.23868/202003008
- Mohler ER, Gannon F, Reynolds C, et al. Bone formation and inflammation in cardiac valves. Circulation. 2001;103(11):1522–1528. doi: 10.1161/01.cir.103.11.1522
- Genêt F, Jourdan C, Schnitzler A, et al. Troublesome heterotopic ossification after central nervous system damage: a survey of 570 surgeries. PLoS One. 2011;6(1). doi: 10.1371/journal.pone.0016632
- Garland DE. Clinical observations on fractures and heterotopic ossification in the spinal cord and traumatic brain injured populations. Clin Orthop Rel Res. 1988;233:86–101.
- Brady RD, Shultz SR, McDonald SJ, et al. Neurological heterotopic ossification: current understanding and future directions. Bone. 2018;109:35–42. doi: 10.1016/j.bone.2017.05.015
- Potter BK, Burns TC, Lacap AP, et al. Heterotopic ossification following traumatic and combat-related amputations. Prevalence, risk factors, and preliminary results of excision. J Bone Joint Surg Am. 2007;89:476–486. doi: 10.2106/JBJS.F.00412
- Forsberg JA, Pepek JM, Wagner S, et al. Heterotopic ossification in high-energy wartime extremity injuries: prevalence and risk factors. J Bone Joint Surg Am. 2009;91(5):1084–1091. doi: 10.2106/JBJS.H.00792
- Reznik JE, Biros E, Marshall R, et al. Prevalence and risk-factors of neurogenic heterotopic ossification in traumatic spinal cord and traumatic brain injured patients admitted to specialised units in Australia. J Musculoskelet Neuronal Interact. 2014;14(1):19–28.
- Cipriano C, Pill SG, Rosenstock J, et al. Radiation therapy for preventing recurrence of neurogenic heterotopic ossification. Orthopedics. 2009;32(9). doi: 10.3928/01477447-20090728-33
- Estraneo A, Pascarella A, Masotta O, et al. Multi-center observational study on occurrence and related clinical factors of neurogenic heterotopic ossification in patients with disorders of consciousness. Brain Inj. 2021;35(5):530–535. doi: 10.1080/02699052.2021.1893384
- Simonsen LL, Sonne-Holm S, Krasheninnikoff M, et al. Symptomatic heterotopic ossification after very severe traumatic brain injury in 114 patients: incidence and risk factors. Injury. 2007;38(10):1146–1150. doi: 10.1016/j.injury.2007.03.019
- Ranganathan K, Loder S, Agarwal S, et al. Heterotopic ossification: basic-science principles and clinical correlates. J Bone Joint Surg Am. 2015;97(13):1101–1111. doi: 10.2106/JBJS.N.01056
- Kluger G, Kochs A, Holthausen H. Heterotopic ossification in childhood and adolescence. J Child Neurology. 2000;15(6):406–413. doi: 10.1177/088307380001500610
- Hurvitz EA, Mandac BR, Davidoff G, et al. Risk factors for heterotopic ossification in children and adolescents with severe traumatic brain injury. Arch Phys Med Rehabil. 1992;73(5):459–462.
- Citak M, Suero EM, Backhaus M, et al. Risk factors for heterotopic ossification in patients with spinal cord injury: a case-control study of 264 patients. Spine. 2012;37(23):1953–1957. doi: 10.1097/BRS.0b013e31825ee81b
- Van Kuijk AA, Geurts ACH, van Kuppevelt HJM. Neurogenic heterotopic ossification in spinal cord injury. Spinal Cord. 2002;40:313–326. doi: 10.1038/sj.sc.3101309
- Yolcu YU, Wahood W, Goyal A, et al. Factors associated with higher rates of heterotopic ossification after spinal cord injury: a systematic review and meta-analysis. Clin Neurol Neurosurg. 2020;195. doi: 10.1016/j.clineuro.2020.105821
- Van Kampen PJ, Martina JD, Vos PE, et al. Potential risk factors for developing heterotopic ossification in patients with severe traumatic brain injury. J Head Trauma Rehabil. 2011;26(5):384–391. doi: 10.1097/HTR.0b013e3181f78a59
- Krauss H, Maier D, Bühren V, et al. Development of heterotopic ossifications, blood markers and outcome after radiation therapy in spinal cord injured patients. Spinal Cord. 2015;53(5):345–348. doi: 10.1038/sc.2014.186
- Rawat N, Chugh S, Zachariah K, et al. Incidence and characteristics of heterotopic ossification after spinal cord injury: a single institution study in India. Spinal Cord Ser Cases. 2019;5:72. doi: 10.1038/s41394-019-0216-6
- Lal S, Hamilton BB, Heinemann A, et al. Risk factors for heterotopic ossification in spinal cord injury. Arch Phys Med Rehabil. 1989;70(5):387–390.
- Thefenne L, de Brier G, Leclerc T, et al. Two new risk factors for heterotopic ossification development after severe burns. PLoS One. 2017;12(8). doi: 10.1371/journal.pone.0182303
- Orchard GR, Paratz JD, Blot S, et al. Risk factors in hospitalized patients with burn injuries for developing heterotopic ossification: a retrospective analysis. J Burn Care Res. 2015;36(4):465–470. doi: 10.1097/BCR.0000000000000123
- Pulik Ł, Mierzejewski B, Ciemerych MA, et al. The survey of cells responsible for heterotopic ossification development in skeletal muscles-human and mouse models. Cells. 2020;9(6):1324. doi: 10.3390/cells9061324
- McCarthy EF, Sundaram M. Heterotopic ossification: a review. Skeletal Radiol. 2005;34(10):609–619. doi: 10.1007/s00256-005
- Foley KL, Hebela N, Keenan MA, et al. Histopathology of periarticular non-hereditary heterotopic ossification. Bone. 2018;109:65–70. doi: 10.1016/j.bone.2017.12.006
- Brady RD, Grills BL, Church JE, et al. Closed head experimental traumatic brain injury increases size and bone volume of callus in mice with concomitant tibial fracture. Sci Rep. 2016;6. doi: 10.1038/srep34491
- Wang L, Yao X, Xiao L, et. al. The effects of spinal cord injury on bone healing in patients with femoral fractures. J Spinal Cord Med. 2014;37(4):414–419. doi: 10.1179/2045772313Y.0000000155
- Posti JP, Tenovuo O. Blood-based biomarkers and traumatic brain injury – a clinical perspective. Acta Neurologica Scandinavica. 2022;146(4):389–399. doi: 10.1111/ane.13620
- Gugala Z, Olmsted-Davis EA, Xiong Y, et al. Trauma-induced heterotopic ossification regulates the blood-nerve barrier. Front Neurol. 2018;9:408. doi: 10.3389/fneur.2018.00408
- Wong KR, Mychasiuk R, O’Brien TJ, et al. Neurological heterotopic ossification: novel mechanisms, prognostic biomarkers and prophylactic therapies. Bone Res. 2020;8(1):42. doi: 10.1038/s41413-020-00119-9
- Gautschi OP, Toffoli AM, Joesbury KA, et al. Osteoinductive effect of cerebrospinal fluid from brain-injured patients. J Neurotrauma. 2007;24(1):154–162. doi: 10.1089/neu.2006.0166
- Genêt F, Kulina I, Vaquette C, et al. Neurological heterotopic ossification following spinal cord injury is triggered by macrophage-mediated inflammation in muscle. J Pathol. 2015;236(2):229–240. doi: 10.1002/path.4519
- Alexander KA, Tseng H, Salga M, et al. When the nervous system turns skeletal muscles into bones: how to solve the conundrum of neurogenic heterotopic ossification. Curr Osteoporos Rep. 2020;18(6):666–676. doi: 10.1007/s11914-020-00636-w
- Bryden DW, Tilghman JI, Hinds SR. Blast-related traumatic brain injury: current concepts and research considerations. J Exp Neurosci. 2019;13. doi: 10.1177/1179069519872213
- Cunha DA, Camargos S, Passos VMA, et al. Heterotopic ossification after stroke: clinical profile and severity of ossification. J Stroke Cerebrovasc Dis. 2019;28(2):513–520. doi: 10.1016/j.jstrokecerebrovasdis.2018.10.032
- Mezghani S, Salga M, Tordjman M, et al. Heterotopic ossification and COVID 19: imaging analysis of ten consecutive cases. Eur J Radiol. 2022;152. doi: 10.1016/j.ejrad.2022.110336
- Meyer C, Haustrate MA, Nisolle JF, et al. Heterotopic ossification in COVID-19: a series of 4 cases. Ann Phys Rehabil Med. 2020;63(6):565–567. doi: 10.1016/j.rehab.2020.09.010
- Huang Y, Wang X, Zhou D, et al. Macrophages in heterotopic ossification: from mechanisms to therapy. NPJ Regen Med. 2021;6(1):70. doi: 10.1038/s41536-021-00178-4
- Lazard ZW, Olmsted-Davis EA, Salisbury EA, et al. Osteoblasts have a neural origin in heterotopic ossification. Clin Orthop Relat Res. 2015;9(473):2790–2806. doi: 10.1007/s11999-015-4323-9
- Olmsted-Davis EA, Salisbury EA, Hoang D, et al. Progenitors in peripheral nerves launch heterotopic ossification. Stem Cells Transl Med. 2017;6(4):1109–1119. doi: 10.1002/sctm.16-0347
- Girard D, Torossian F, Oberlin E, et al. Neurogenic heterotopic ossifications recapitulate hematopoietic stem cell niche development within an adult osteogenic muscle environment. Front Cell Dev Biol. 2021;9. doi: 10.3389/fcell.2021.611842
- Medici D, Shore EM, Lounev VY, et al. Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med. 2010;16(12):1400–1406. doi: 10.1038/nm.2252
- Agarwal S, Loder S, Cholok D, et al. Local and circulating endothelial cells undergo Endothelial to Mesenchymal Transition (EndMT) in response to musculoskeletal injury. Sci Rep. 2016;6. doi: 10.1038/srep32514
- Gareev IF, Beylerli OA, Vakhitov AK. Heterotopic ossification after central nervous system injuries: understanding of pathogenesis. N.N. Priorov Journal of Traumatology and Orthopedics. 2018;25(3–4):119–124. (In Russ.) doi: 10.17116/vto201803-041119
- Montecino M, Stein G, Stein J, et al. Multiple levels of epigenetic control for bone biology and pathology. Bone. 2015;(81):733–738. doi: 10.1016/j.bone.2015.03.013
- Komori T. Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem Cell Biol. 2018;149:313–323. doi: 10.1007/s00418-018-1640-6
- Lee KS, Hong SH, Bae SC. Both the smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Oncogene. 2002;21(47):7156–7163. doi: 10.1038/sj.onc.1205937
- Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016;4(1):1–21. doi: 10.1038/boneres.2016.9
- Rahman MS, Akhtar N, Jamil HM, et al. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res. 2015;3(1):1–20. doi: 10.1038/boneres.2015.5
- Kang JS, Alliston T, Delston R, et al. Repression of Runx2 function by TGF-beta through recruitment of class II histone deacetylases by Smad3. Embo J. 2005;24(14):2543–2555. doi: 10.1038/sj.emboj.7600729
- Hino K, Horigome K, Nishio M. Activin-A enhances mTOR signaling to promote aberrant chondrogenesis in fibrodysplasia ossificans progressiva. J Clin Invest. 2017;127(9):3339–3352. doi: 10.1172/JCI93521
- Agarwal S, Loder S, Brownley C, et al. Inhibition of Hif1 alpha prevents both trauma-induced and genetic heterotopic ossification. Proc Natl Acad Sci. 2016;113(3):E338–E347. doi: 10.1073/pnas.1515397113
- Peterson JR, De La Rosa S, Sun H, et al. Burn injury enhances bone formation in heterotopic ossification model. Ann Surg. 2014;259(5):993–998. doi: 10.1097/SLA.0b013e318291da85
- Croes M, Kruyt MC, Boot W, et al. The role of bacterial stimuli in inflammation-driven bone formation. Eur Cells Mater. 2019;37:402–419. doi: 10.22203/eCM.v037a24
- Ranganathan K, Peterson J, Agarwal S, et al. Role of gender in burn-induced heterotopic ossification and mesenchymal cell osteogenic differentiation. Plast Reconstr Surg. 2015;135(6):1631–1641. doi: 10.1097/PRS.0000000000001266
- Xu Y, Huang M, He W, et al. Heterotopic ossification: clinical features, basic researches, and mechanical stimulations. Front Cell Dev Biol. 2022;10. doi: 10.3389/fcell.2022.770931
- Ebinger T, Roesch M, Kiefer H, et al. Influence of etiology in heterotopic bone formation of the hip. J Trauma. 2000;48(6):1058–1062. doi: 10.1097/00005373-200006000-00010
- Ko HY. Neurogenic heterotopic ossification in spinal cord injuries. In: Management and Rehabilitation of Spinal Cord Injuries. Singapore: Springer; 2020. P. 691–704. doi: 10.1007/978-981-19-0228-4_35
- Wittenberg RH, Peschke U, Bötel U. Heterotopic ossification after spinal cord injury: epidemiology and risk factors. J Bone Joint Surg Br. 1992;74(2):215–218. doi: 10.1302/0301-620X.74B2.1544955
- Green D. Medical management of long-term disability. Boston: Butterworth-Heinemann, 1996.
- Mujtaba B, Taher A, Fiala MJ, et al. Heterotopic ossification: radiological and pathological review. Radiol Oncol. 2019;53(3):275. doi: 10.2478/raon-2019-0039
- Wilkinson JM, Stockley I, Hamer AJ, et al. Biochemical markers of bone turnover and development of heterotopic ossification after total hip arthroplasty. J Orthop Res. 2003;21(3):529–534. doi: 10.1016/S0736-0266(02)00236-X
- Povoroznyuk V, Bystrytska M, Balatska N. Early diagnostic algorithm in heterotopic ossification in patients with spine and spinal cord injury. Int Neurol J. 2017;3:89–94. doi: 10.22141/2224-0713.5.91.2017.110861
- Pulik Ł, Mierzejewski B, Sibilska A, et al. The role of miRNA and lncRNA in heterotopic ossification pathogenesis. Stem Cell Res Ther. 2022;13(1):523. doi: 10.1186/s13287-022-03213-3
- Edsberg LE, Crowgey EL, Osborn PM, et al. A survey of proteomic biomarkers for heterotopic ossification in blood serum. J Orthop Surg Res. 2017;12(1):1–13. doi: 10.1186/s13018-017-0567-2
Supplementary files
