脊柱畸形手术中矫正棒的断裂 (临床资料分析及文献系统回顾)
- 作者: Mikhaylovskiy M.V.1, Vasujra A.S.1, Lukinov V.L.2
-
隶属关系:
- Novosibirsk Research Institute for Traumatology and Orthopedics n.a. Ya.L. Tsivyan
- Institute of Computational Mathematics and Mathematical Geophysics SB RAS
- 期: 卷 7, 编号 4 (2019)
- 页面: 15-26
- 栏目: Original Study Article
- URL: https://bakhtiniada.ru/turner/article/view/12699
- DOI: https://doi.org/10.17816/PTORS7415-26
- ID: 12699
如何引用文章
详细
论证:矫正棒断裂是脊柱畸形手术的特殊并发症之一。关于这题的出版材料很少,而且作者的结论往往相互矛盾。
目的分析各种原因的脊柱畸形的内矫正棒断裂的问题,考虑到这种并发症的频率和危险因素。
材料与方法:该研究包括在1996年至2018年间做过手术的3833名患者。研究入选标准的年龄为10岁
以上,病史无脊柱手术。
结果:3833位患者中有85位(2.2%)发生金属结构的植入物的骨折。特发性脊柱侧凸与先天性脊柱侧凸存在显著性差异。在85位患者中有62位发生了矫正棒断裂,因此需要反复手术干预,通过连接器恢复矫正棒的完整性或完全的替换。体重指数增加1,骨折几率增加1.07倍(p = 0.019),年龄
增加1岁,骨折几率增加1.03倍(p = 0.039)。手术治疗的腹侧期(椎间盘切除术及与自体骨的椎体间融合术)与骨折之间无统计学意义(p = 0.403)。在20岁以下的患者组中,年龄大于15岁是一个有统计学意义的预测因子(p = 0.048)。在20岁以下的患者中,体重指数与骨折风险之间没有统计学意义上的阈值。混合固定系统的并发症发生率明显低于钩式固定系统。
进行了系统地回顾关于Scopus、Medline、GoogleScholar等国际数据库中讨论的主题的文献来源,
并搜索参考文献列表中的出版物。
结论:脊柱畸形手术中各种原因导致矫正棒断裂是典型的并发症之一。在大研究组中,矫正棒断裂的频率较低。随着患者体重指数和年龄的增加,这种并发症发生的风险也会增加,尽管对于20岁以下
的一组患者来说,体重指数与骨折的几率之间没有统计学上显著的阈值。现代的椎弓根系统将内矫正棒连接到椎体结构上,可以显著降低术后内矫正棒断裂的风险。
作者简介
Mikhail Mikhaylovskiy
Novosibirsk Research Institute for Traumatology and Orthopedics n.a. Ya.L. Tsivyan
编辑信件的主要联系方式.
Email: MMihailovsky@niito.ru
ORCID iD: 0000-0002-4847-100X
SPIN 代码: 5828-8306
Scopus 作者 ID: 57028305800
http://www.niito.ru/childrensteenage.php
MD, PhD, D.Sc., Professor, Chief Researcher of the Spine Surgery Department for Children and Adolescents
俄罗斯联邦, 17, Frunze Street Novosibirsk, 630091Alexander Vasujra
Novosibirsk Research Institute for Traumatology and Orthopedics n.a. Ya.L. Tsivyan
Email: MMihailovsky@niito.ru
ORCID iD: 0000-0002-2473-3140
MD, PhD, Senior Researcher of the Spine Surgery Department for Children and Adolescents
俄罗斯联邦, 17, Frunze Street Novosibirsk, 630091Vitaliy Lukinov
Institute of Computational Mathematics and Mathematical Geophysics SB RAS
Email: MMihailovsky@niito.ru
ORCID iD: 0000-0002-3411-508X
PhD, Senior Researcher of the Laboratory of Numerical Analysis of Stochastic Differential Equations
俄罗斯联邦, 6, Prospect Akad. Lavrentieva, Novosibirsk, 630090参考
- Ahmed SI, Bastrom TP, Yaszay B, et al. 5-Year reoperation risk and causes for revision after idiopathic scoliosis surgery. Spine (Phila Pa 1976). 2017;42(13):999-1005. https://doi.org/10.1097/BRS.0000000000001968.
- Carreon LY, Puno RM, Lenke LG, et al. Non-neurologic complications following surgery for adolescent idiopathic scoliosis. J Bone Joint Surg Am. 2007;89(11):2427-2432. https://doi.org/10.2106/JBJS.F.00995.
- Jain A, Puvanesarajah V, Menga EN, Sponseller PD. Unplanned hospital readmissions and reoperations after pediatric spinal fusion surgery. Spine (Phila Pa 1976). 2015;40(11):856-862. https://doi.org/10.1097/BRS.0000000000000857.
- Reames DL, Smith JS, Fu KM, et al. Complications in the surgical treatment of 19,360 cases of pediatric scoliosis: a review of the Scoliosis Research Society Morbidity and Mortality database. Spine (Phila Pa 1976). 2011;36(18):1484-1491. https://doi.org/10.1097/BRS.0b013e3181f3a326.
- Akazawa T, Kotani T, Sakuma T, et al. Rod fracture after long construct fusion for spinal deformity: clinical and radiographic risk factors. J Orthop Sci. 2013;18(6):926-931. https://doi.org/10.1007/s00776-013-0464-4.
- Dailey SK, Crawford AH, Asghar FS. Implant failure following posterior spinal fusion-caudal migration of a fractured rod: case report. Spine Deform. 2015;3(4):380-385. https://doi.org/10.1016/ j.jspd.2015.02.001.
- Kavadi N, Tallarico RA, Lavelle WF. Analysis of instrumentation failures after three column osteotomies of the spine. Scoliosis Spinal Disord. 2017;12:19. https://doi.org/10.1186/s13013-017-0127-x.
- Smith JS, Shaffrey CI, Ames CP, et al. Assessment of symptomatic rod fracture after posterior instrumented fusion for adult spinal deformity. Neurosurgery. 2012;71(4):862-867. https://doi.org/10.1227/NEU.0b013e3182672aab.
- Smith JS, Shaffrey E, Klineberg E, et al. Prospective multicenter assessment of risk factors for rod fracture following surgery for adult spinal deformity. J Neurosurg Spine. 2014;21(6):994-1003. https://doi.org/10.3171/2014.9.SPINE131176.
- Lertudomphonwanit T, Kelly MP, Bridwell KH, et al. Rod fracture in adult spinal deformity surgery fused to the sacrum: prevalence, risk factors, and impact on health-related quality of life in 526 patients. Spine J. 2018;18(9):1612-1624. https://doi.org/10.1016/j.spinee.2018.02.008.
- Coe JD, Arlet V, Donaldson W, et al. Complications in spinal fusion for adolescent idiopathic scoliosis in the new millennium. A report of the Scoliosis Research Society Morbidity and Mortality Committee. Spine (Phila Pa 1976). 2006;31(3):345-349. https://doi.org/10.1097/01.brs.0000197188.76369.13.
- Richards BS, Hasley BP, Casey VF. Repeat surgical interventions following “definitive” instrumentation and fusion for idiopathic scoliosis. Spine (Phila Pa 1976). 2006;31(26):3018-3026. https://doi.org/10.1097/01.brs.0000249553.22138.58.
- Weiss HR, Goodall D. Rate of complications in scoliosis surgery — a systematic review of the PubMed literature. Scoliosis. 2008;3:9. https://doi.org/10.1186/1748-7161-3-9.
- Mok JM, Cloyd JM, Bradford DS, et al. Reoperation after primary fusion for adult spinal deformity: rate, reason, and timing. Spine (Phila Pa 1976). 2009;34(8):832-839. https://doi.org/10.1097/BRS.0b013e31819f2080.
- Fu KM, Smith JS, Polly DW, et al. Morbidity and mortality associated with spinal surgery in children: a review of the Scoliosis Research Society morbidity and mortality database. J Neurosurg Pediatr. 2011;7(1):37-41. https://doi.org/10.3171/2010.10.PEDS10212.
- Ramo BA, Richards BS. Repeat surgical interventions following “definitive” instrumentation and fusion for idiopathic scoliosis: five-year update on a previously published cohort. Spine (Phila Pa 1976). 2012;37(14):1211-1217. https://doi.org/10.1097/BRS. 0b013e31824b6b05.
- De la Garza Ramos R, Goodwin CR, Purvis T, et al. Primary versus revision spinal fusion in children: an analysis of 74,525 cases from the nationwide inpatient sample. Spine (Phila Pa 1976). 2017;42(11):E660-E665. https://doi.org/10.1097/BRS.0000000000001924.
- Yang BP, Ondra SL, Chen LA, et al. Clinical and radiographic outcomes of thoracic and lumbar pedicle subtraction osteotomy for fixed sagittal imbalance. J Neurosurg Spine. 2006;5(1):9-17. https://doi.org/10.3171/spi.2006.5.1.9.
- Lykissas MG, Jain VV, Nathan ST, et al. Mid- to long-term outcomes in adolescent idiopathic scoliosis after instrumented posterior spinal fusion: a meta-analysis. Spine (Phila Pa 1976). 2013;38(2):E113-119. https://doi.org/10.1097/BRS.0b013e31827ae3d0.
- Smith JS, Klineberg E, Lafage V, et al. Prospective multicenter assessment of perioperative and minimum 2-year postoperative complication rates associated with adult spinal deformity surgery. J Neurosurg Spine. 2016;25(1):1-14. https://doi.org/10.3171/2015.11.SPINE151036.
- Wattenbarger JM, Richards BS, Herring JA. A comparison of single-rod instrumentation with double-rod instrumentation in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2000;25(13):1680-1688. https://doi.org/10.1097/00007632-200007010-00011.
- Soroceanu A, Diebo BG, Burton D, et al. Radiographical and implant-related complications in adult spinal deformity surgery: incidence, patient risk factors, and impact on health-related quality of life. Spine (Phila Pa 1976). 2015;40(18):1414-1421. https://doi.org/10.1097/BRS.0000000000001020.
- Yoshihara H. Rods in spinal surgery: a review of the literature. Spine J. 2013;13(10):1350-1358. https://doi.org/10.1016/j.spinee.2013.04.022.
- Albers HW, Hresko MT, Carlson J, Hall JE. Comparison of single- and dual-rod techniques for posterior spinal instrumentation in the treatment of adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2000;25(15):1944-1949. https://doi.org/10.1097/00007632-200008010-00013.
- Fricka KB, Mahar AT, Newton PO. Biomechanical analysis of anterior scoliosis instrumentation: differences between single and dual rod systems with and without interbody structural support. Spine (Phila Pa 1976). 2002;27(7):702-706. https://doi.org/10.1097/00007632-200204010-00006.
- Lindsey C, Deviren V, Xu Z, et al. The effects of rod contouring on spinal construct fatigue strength. Spine (Phila Pa 1976). 2006;31(15):1680-1687. https://doi.org/10.1097/01.brs.0000224177.97846.00.
- Kokabu T, Kanai S, Abe Y, et al. Identification of optimized rod shapes to guide anatomical spinal reconstruction for adolescent thoracic idiopathic scoliosis. J Orthop Res. 2018;36(12):3219-3224. https://doi.org/10.1002/jor.24118.
- Garg S, Niswander C, Pan Z, Erickson M. Cross-links do not improve clinical or radiographic outcomes of posterior spinal fusion with pedicle screws in adolescent idiopathic scoliosis: a multicenter cohort study. Spine Deform. 2015;3(4):338-344. https://doi.org/10.1016/j.jspd.2014.12.002.
- Kim YJ, Bridwell KH, Lenke LG, et al. Pseudarthrosis in long adult spinal deformity instrumentation and fusion to the sacrum: prevalence and risk factor analysis of 144 cases. Spine (Phila Pa 1976). 2006;31(20):2329-2336. https://doi.org/10.1097/01.brs.0000238968. 82799.d9.
- Dhawale AA, Shah SA, Yorgova P, et al. Effectiveness of cross-linking posterior segmental instrumentation in adolescent idiopathic scoliosis: a 2-year follow-up comparative study. Spine J. 2013;13(11):1485-1492. https://doi.org/10.1016/j.spinee.2013.05.022.
- Сotrel Y, Dubousset J. C-D instrumentation in spine surgery. Principles, technicals, mistakes and traps. Montpellier: Sauramps Medical; 1992. 159 p.
- Teles AR, Yavin D, Zafeiris CP, et al. Fractures after removal of spinal instrumentation: revisiting the stress-shielding effect of instrumentation in spine fusion. World Neurosurg. 2018;116:e1137-e1143. https://doi.org/10.1016/j.wneu.2018.05.187.
- Renshaw TS. The role of Harrington instrumentation and posterior spine fusion in the management of adolescent idiopathic scoliosis. Orthop Clin North Am. 1988;19(2):257-267.
- Hawes M. Impact of spine surgery on signs and symptoms of spinal deformity. Pediatr Rehabil. 2006;9(4):318-339. https://doi.org/10.1080/13638490500402264.
补充文件
