MicroRNA在非小细胞肺癌癌变中的作用研究
- 作者: Gubenko M.S.1, Loginov V.I.1, Burdennyy A.M.1, Pronina I.V.1, Khokhlova S.V.2, Pertsov S.S.3
-
隶属关系:
- Institute of General Pathology and Pathophysiology
- National Medical Research Center of Obstetrics, Gynecology and Perinatology named after academician V. I. Kulakov
- P. K. Anokhin Research Institute of Normal Physiology
- 期: 卷 30, 编号 1 (2022)
- 页面: 123-132
- 栏目: Reviews
- URL: https://bakhtiniada.ru/pavlovj/article/view/71395
- DOI: https://doi.org/10.17816/PAVLOVJ71395
- ID: 71395
如何引用文章
详细
绪论:肺癌是最常见的恶性肿瘤。尽管在靶向治疗、免疫治疗和化疗方面取得了巨大进展,但非小细胞肺癌仍然是全球癌症死亡的主要原因。肿瘤的发展是一个复杂的过程,可受环境因素和遗传易感性的影响。虽然致癌因子已被广泛研究,但其主要作用机制目前尚不清楚。因此,研究包括微小RNA(miRNA)在内的致瘤机制对恶性肿瘤的诊断和治疗具有重要意义。微小RNA是一类小的非编码核糖核酸,参与多种细胞生物学过程,包括肿瘤细胞的上皮-间充质转化、凋亡、增殖、侵袭和转移。最近发表的论文表明,可以通过分析一些微小RNA的表达水平来预测癌症的病程。因此,微小RNA是一个很有前途的诊断和治疗肿瘤疾病的目标。
结论:本综述总结了一些微小RNA在非小细胞肺癌中的致癌作用和预后意义:miR-128、miR-4500、miR-222、miR-224、miR-124、miR-125b、miR-127、miR-129-2、miR-137和miR-375。
作者简介
Marina S. Gubenko
Institute of General Pathology and Pathophysiology
Email: artz_marina@mail.ru
ORCID iD: 0000-0001-5439-9713
SPIN 代码: 4992-7397
俄罗斯联邦, Moscow
Vitaliy I. Loginov
Institute of General Pathology and Pathophysiology
Email: werwolf2000@mail.ru
ORCID iD: 0000-0003-2668-8096
SPIN 代码: 6249-5883
Cand. Sci. (Biol.)
俄罗斯联邦, MoscowAleksey M. Burdennyy
Institute of General Pathology and Pathophysiology
Email: koldun.pro@mail.ru
ORCID iD: 0000-0002-9398-8075
SPIN 代码: 4429-4288
Cand. Sci. (Biol.)
俄罗斯联邦, MoscowIrina V. Pronina
Institute of General Pathology and Pathophysiology
Email: p.lenyxa@yandex.ru
ORCID iD: 0000-0002-0423-7801
SPIN 代码: 5706-2369
Cand. Sci. (Biol.)
俄罗斯联邦, MoscowSvetlana V. Khokhlova
National Medical Research Center of Obstetrics, Gynecology and Perinatology named after academician V. I. Kulakov
Email: svkhokhlova@mail.ru
ORCID iD: 0000-0002-4121-7228
SPIN 代码: 6009-4616
MD, Dr. Sci. (Med.), Professor
俄罗斯联邦, MoscowSergey S. Pertsov
P. K. Anokhin Research Institute of Normal Physiology
编辑信件的主要联系方式.
Email: s.pertsov@mail.ru
ORCID iD: 0000-0001-5530-4990
SPIN 代码: 3876-0513
MD, Dr. Sci. (Med.), Professor
俄罗斯联邦, Moscow参考
- Yang H–W, Liu G–H, Liu Y–Q, et al. Over–expression of microRNA-940 promotes cell proliferation by targeting GSK3beta and sFRP1 in human pancreatic carcinoma. Biomedicine & Pharmacotherapy. 2016;83:593–601. doi: 10.1016/j.biopha.2016.06.057
- Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54. doi: 10.1016/0092-8674(93)90529-y
- Esteller M. Non-coding RNAs in human disease. Nature Reviews. Genetics. 2011;12(12):861–74. doi: 10.1038/nrg3074
- Jin M, Zhang T, Liu C, et al. miRNA-128 suppresses prostate cancer by inhibiting BMI-1 to inhibit tumor–initiating cells. Cancer Research. 2014;74(15):4183–95. doi: 10.1158/0008-5472.CAN-14-0404
- Chen Z, Lai T–C, Jan Y–H, et al. Hypoxia–responsive miRNAs target argonaute 1 to promote angiogenesis. The Journal of Clinical Investigation. 2013;123(3):1057–67. doi: 10.1172/JCI65344
- Ho JJD, Metcalf JL, Yan MS, et al. Functional importance of Dicer protein in the adaptive cellular response to hypoxia. The Journal of Biological Chemistry. 2012;287(34):29003–20. doi: 10.1074/jbc.m112.373365
- Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature. 2010;467(7311):86–90. doi: 10.1038/nature09284
- Liu H–T, Xing A–Y, Chen X, et al. MicroRNA-27b, microRNA-101 and microRNA-128 inhibit angiogenesis by down–regulating vascular endothelial growth factor C expression in gastric cancers. Oncotarget. 2015;6(35):37458–70. doi: 10.18632/oncotarget.6059
- Markou A, Liang Y, Lianidou E. Prognostic, therapeutic and diagnostic potential of microRNAs in non-small cell lung cancer. Clinical Chemistry and Laboratory Medicine. 2011;49(10):1591–603. doi: 10.1515/CCLM.2011.661
- Zhang R, Liu C, Niu Y, et al. MicroRNA-128-3p regulates mitomycin C-induced DNA damage response in lung cancer cells through repressing SPTAN1. Oncotarget. 2016;8(35):58098–107. doi: 10.18632/oncotarget.12300
- Zeng XC, Li L, Wen H, et al. MicroRNA-128 inhibition attenuates myocardial ischemia/reperfusion injury–induced cardiomyocyte apoptosis by the targeted activation of peroxisome proliferator–activated receptor gamma. Molecular Medicine Reports. 2016;14(1):129–36. doi: 10.3892/mmr.2016.5208
- Liu X, Gao Y, Lu Y, et al. Upregulation of NEK2 is associated with drug resistance in ovarian cancer. Oncology Reports. 2014;31(2):745–54. doi: 10.3892/or.2013.2910
- Zhao D, Han W, Liu X, et al. MicroRNA–128 promotes apoptosis in lung cancer by directly targeting NIMA–related kinase 2. Thoracic Cancer. 2017;8(4):304–11. doi: 10.1111/1759-7714.12442
- Zhang L, Qian J, Qiang Y, et al. Down–regulation of miR-4500 promoted non-small cell lung cancer growth. Cellular Physiology and Biochemistry. 2014;34(4):1166–74. doi: 10.1159/000366329
- Li Z–Y, Zhang Z–Z, Bi H, et al. MicroRNA-4500 suppresses tumor progression in non-small cell lung cancer by regulating STAT3. Molecular Medicine Reports. 2019;20(6):4973–83. doi: 10.3892/mmr.2019.10737
- Wei F, Ma C, Zhou T, et al. Exosomes derived from gemcitabine-resistant cells transfer malignant phenotypic traits via delivery of miRNA-222-3p. Molecular Cancer. 2017;16(1):132. doi: 10.1186/s12943-017-0694-8
- Ulivi P, Petracci E, Marisi G, et al. Prognostic Role of Circulating miRNAs in Early-Stage Non-Small Cell Lung Cancer. Journal of Clinical Medicine. 2019;8(2):131. doi: 10.3390/jcm8020131
- Wang Y, Lee ATC, Ma JZI, et al. Profiling microRNA expression in hepatocellular carcinoma reveals microRNA-224 up-regulation and apoptosis inhibitor-5 as a microRNA-224-specific target. The Journal of Biological Chemistry. 2008;283(19):13205–15. doi: 10.1074/jbc.m707629200
- Wang Y, Ren J, Gao Y, et al. MicroRNA-224 targets SMAD family member 4 to promote cell proliferation and negatively influence patient survival. PLoS One. 2013;8(7):e68744. doi: 10.1371/journal.pone.0068744
- Huang L, Dai T, Lin X, et al. MicroRNA-224 targets RKIP to control cell invasion and expression of metastasis genes in human breast cancer cells. Biochemical and Biophysical Research Communications. 2012;425(2):127–33. doi: 10.1016/j.bbrc.2012.07.025
- Goto Y, Nishikawa R, Kojima S, et al. Tumour-suppressive microRNA-224 inhibits cancer cell migration and invasion via targeting oncogenic TPD52 in prostate cancer. FEBS Letters. 2014;588(10):1973–82. doi: 10.1016/j.febslet.2014.04.020
- Wang H, Zhu L–J, Yang Y–C, et al. MiR-224 promotes the chemoresistance of human lung adenocarcinoma cells to cisplatin via regulating G₁/S transition and apoptosis by targeting p21(WAF1/CIP1). British Journal of Cancer. 2014;111(2):339–54. doi: 10.1038/bjc.2014.157
- Zhu X, Kudo M, Huang X, et al. Frontiers of MicroRNA Signature in Non-small Cell Lung Cancer. Frontiers in Cell and Developmental Biology. 2021;9:643942. doi: 10.3389/fcell.2021.643942
- Li Z, Wang X, Li W, et al. miRNA-124 modulates lung carcinoma cell migration and invasion. Clinical Pharmacology and Therapeutics. 2016;54(8):603–12. doi: 10.5414/CP202551
- Yang Q, Wan L, Xiao C, et al. Inhibition of LHX2 by miR-124 suppresses cellular migration and invasion in non-small cell lung cancer. Oncology Letters. 2017;14(3):3429–36. doi: 10.3892/ol.2017.6607
- Liu Y–Y, Zhang L–Y, Du W–Z. Circular RNA circ-PVT1 contributes to paclitaxel resistance of gastric cancer cells through the regulation of ZEB1 expression by sponging miR-124-3p. Bioscience Reports. 2019;39(12):BSR20193045. doi: 10.1042/BSR20193045
- Hu D, Li M, Su J, et al. Dual-targeting of miR-124-3p and ABCC4 Promotes Sensitivity to Adriamycin in Breast Cancer Cells. Genetic Testing and Molecular Biomarkers. 2019;23(3):156–65. doi: 10.1089/gtmb.2018.0259
- Yan G, Li Y, Zhan L, et al. Decreased miR-124-3p promoted breast cancer proliferation and metastasis by targeting MGAT5. American Journal of Cancer Research. 2019;9(3):585–96.
- Cai J, Huang J, Wang W, et al. miR-124-3p Regulates FGF2-EGFR Pathway to Overcome Pemetrexed Resistance in Lung Adenocarcinoma Cells by Targeting MGAT5. Cancer Management and Research. 2020;12:11597–609. doi: 10.2147/CMAR.S274192
- Zhao Y, Bhattacharjee S, Jones BM, et al. Regulation of neurotropic signaling by the inducible, NF-kB-sensitive miRNA-125b in Alzheimer's disease (AD) and in primary human neuronal-glial (HNG) cells. Molecular Neurobiology. 2014;50(1):97–106. doi: 10.1007/s12035-013-8595-3
- Shaham L, Binder V, Gefen N, et al. MiR-125 in normal and malignant hematopoiesis. Leukemia. 2012;26(9):2011–8. doi: 10.1038/leu.2012.90
- Wang Y, Zhao M, Liu J, et al. MiRNA-125b regulates apoptosis of human non-small cell lung cancer via the PI3K/Akt/GSK3β signaling pathway. Oncology Reports. 2017;38(3):1715–23. doi: 10.3892/or.2017.5808
- Chen J, Wang M, Guo M, et al. miR-127 regulates cell proliferation and senescence by targeting BCL6. PLoS One. 2013;8(11):e80266. doi: 10.1371/journal.pone.0080266
- Guo L–H, Li H, Wang F, et al. The tumor suppress or roles of miR-433 and miR-127 in gastric cancer. International Journal of Molecular Sciences. 2013;14(7):14171–84. doi: 10.3390/ijms140714171
- Shi L, Wang Y, Lu Z, et al. miR-127 promotes EMT and stem-like traits in lung cancer through a feed-forward regulatory loop. Oncogene. 2017;36(12):1631–43. doi: 10.1038/onc.2016.332
- Xiao Y, Li X, Wang H, et al. Epigenetic regulation of miR-129-2 and its effects on the proliferation and invasion in lung cancer cells. Journal of Cellular and Molecular Medicine. 2015;19(9): 2172–80. doi: 10.1111/jcmm.12597
- Theriault BL, Dimaras H, Gallie BL, et al. The genomic landscape of retinoblastoma: a review. Clinical & Experimental Ophthalmology. 2014; 42(1):33–52. doi: 10.1111/ceo.12132
- Bin C, Xiaofeng H, Wanzi X. The effect of microRNA-129 on the migration and invasion in NSCLC cells and its mechanism. Experimental Lung Research. 2018;44(6):280–7. doi: 10.1080/01902148.2018.1536174
- Zhu X, Li Y, Shen H, et al. miR-137 inhibits the proliferation of lung cancer cells by targeting Cdc42 and Cdk6. FEBS Letters. 2013;587(1):73–81. doi: 10.1016/j.febslet.2012.11.004
- Bi Y, Han Y, Bi H, et al. miR-137 impairs the proliferative and migratory capacity of human non-small cell lung cancer cells by targeting paxillin. Human Cell. 2014;27(3):95–102. doi: 10.1007/s13577-013-0085-4
- Zhang B, Liu T, Wu T, et al. microRNA-137 functions as a tumor suppressor in human non-small cell lung cancer by targeting SLC22A18. International Journal of Biological Macromolecules. 2015;74:111–8. doi: 10.1016/j.ijbiomac.2014.12.002
- Noguera–Uclés JF, Boyero L, Salinas A, et al. The Roles of Imprinted SLC22A18 and SLC22A18AS Gene Overexpression Caused by Promoter CpG Island Hypomethylation as Diagnostic and Prognostic Biomarkers for Non-Small Cell Lung Cancer Patients. Cancers (Basel). 2020;12(8):2075. doi: 10.3390/cancers12082075
- Shen H, Wang L, Ge X, et al. MicroRNA-137 inhibits tumor growth and sensitizes chemosensitivity to paclitaxel and cisplatin in lung cancer. Oncotarget. 2016;7(15):20728–42. doi: 10.18632/oncotarget.8011
- Wilting SM, Verlaat W, Jaspers A, et al. Methylation–mediated transcriptional repression of microRNAs during cervical carcinogenesis. Epigenetics. 2013;8(2):220–8. doi: 10.4161/epi.23605
- Yu L, Todd NW, Xing L, et al. Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers. International Journal of Cancer. 2010;127(12):2870–8. doi: 10.1002/ijc.25289
- Li Y, Jiang Q, Xia N, et al. Decreased Expression of MicroRNA-375 in Nonsmall Cell Lung Cancer and its Clinical Significance. The Journal of International Medical Research. 2012;40(5):1662–9. doi: 10.1177/030006051204000505
- Cheng L, Zhan B, Luo P, et al. miRNA-375 regulates the cell survival and apoptosis of human non-small cell carcinoma by targeting HER2. Molecular Medicine Reports. 2017;15(3):1387–92. doi: 10.3892/mmr.2017.6112
补充文件
