Evolution of methods to analyze of retinal images and their significance in hypertension and atherosclerosis
- Authors: Direev A.O.1,2, Malyutina S.K.2
-
Affiliations:
- S. Fyodorov Eye Microsurgery Federal State Institution
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
- Issue: Vol 18, No 3 (2025)
- Pages: 75-82
- Section: Reviews
- URL: https://bakhtiniada.ru/ov/article/view/349529
- DOI: https://doi.org/10.17816/OV635644
- EDN: https://elibrary.ru/QBKSSF
- ID: 349529
Cite item
Abstract
The article reviews current published data on methods to analyze retinal microvasculature images and the importance of these technologies for diagnosis of retinal conditions in patients with hypertension and atherosclerosis. Formerly popular programs (Retinal Analysis and Integrative Vessel Analysis), used to calculate central retinal artery and vein equivalents, gave way to more sophisticated software such as Singapore I Vessel Assessment and ALTAIR, which also performed geometric analysis of the vasculature (endpoints, bifurcations, branch angles, etc.) in addition to measuring diameters of retinal vessels. Not only hardware detection of the vasculature in the image becomes more complicated, but also microcirculation analysis algorithms. Russian analogs, OphtoRule and N.S. Semenova’s calculation method, showed good reproducibility, but they have a limited sample and set of study variables, including retinal vessel diameters and their ratios. Over 100,000 people have been enrolled in population-based and clinical retinal studies, thus the issue of harmonizing databases of various programs is more urgent than ever. Further evolution of automated programs for analysis of retinal vessels and assessment of the clinical significance of parameters for stratification of risk of cardiovascular events and mortality will allow using software analysis of retinal vessels for scientific researches and to improve treatment of patients with cardiovascular diseases in clinical practice.
Full Text
##article.viewOnOriginalSite##About the authors
Artem O. Direev
S. Fyodorov Eye Microsurgery Federal State Institution; Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Author for correspondence.
Email: dr.direev@gmail.com
ORCID iD: 0000-0003-3801-6844
SPIN-code: 5666-5871
Novosibirsk Branch, Research Institute of Internal and Preventive Medicine, MD, Cand. Sci. (Medicine)
Russian Federation, Novosibirsk; NovosibirskSofia K. Malyutina
Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Email: smalyutina@hotmail.com
ORCID iD: 0000-0001-6539-0466
SPIN-code: 6780-9141
Research Institute of Internal and Preventive Medicine, MD, Dr. Sci. (Medicine), Professor
Russian Federation, NovosibirskReferences
- Ho H, Cheung CY, Sabanayagam C, et al. Retinopathy signs improved prediction and reclassification of cardiovascular disease risk in diabetes: a prospective cohort study. Sci Rep. 2017;7(1):41492. doi: 10.1038/srep41492
- Liew G, Wang JJ, Mitchell P, Wong TY. Retinal vascular imaging: a new tool in microvascular disease research. Circ Cardiovasc Imaging. 2008;1(2):156–161. doi: 10.1161/CIRCIMAGING.108.784876
- Triantafyllou A, Anyfanti P, Gavriilaki E, et al. Association between retinal vessel caliber and arterial stiffness in a population comprised of normotensive to early-stage hypertensive individuals. Am J Hypertens. 2014;27(12):1472–1478. doi: 10.1093/ajh/hpu074
- Hanff TC, Sharrett AR, Mosley TH, et al. Retinal microvascular abnormalities predict progression of brain microvascular disease: an atherosclerosis risk in communities magnetic resonance imaging study. Stroke. 2014;45(4):1012–1017. doi: 10.1161/strokeaha.113.004166
- Cheung CY-L, Ikram MK, Sabanayagam C, Wong TY. Retinal microvasculature as a model to study the manifestations of hypertension. Hypertension. 2012;60(5):1094–1103. doi: 10.1161/HYPERTENSIONAHA.111.189142
- Feihl F, Liaudet L, Waeber B. The macrocirculation and microcirculation of hypertension. Curr Hypertens Rep. 2009;11(3):182–189. doi: 10.1007/s11906-009-0033-6
- Meazza R, Scardino C, Grosso Di Palma L, et al. Target organ damage in hypertensive patients: correlation between retinal arteriovenular ratio and left ventricular geometric patterns. J Hum Hypertens. 2014;28(4):274–278. doi: 10.1038/jhh.2013.69
- Wong TY, Duncan BB, Golden SH, et al. Associations between the metabolic syndrome and retinal microvascular signs: the atherosclerosis risk in communities study. Investig Ophthalmol Vis Sci. 2004;45(9):2949–2954. doi: 10.1167/iovs.04-0069
- De Ciuceis C, Rosei CA, Malerba P, et al. Prognostic significance of the wall to lumen ratio of retinal arterioles evaluated by adaptive optics. Eur J Intern Med. 2024;122:86–92. doi: 10.1016/j.ejim.2023.10.035
- Tapp RJ, Owen CG, Barman SA, et al. Associations of retinal microvascular diameters and tortuosity with blood pressure and arterial stiffness: United Kingdom Biobank. Hypertension. 2019;74(6):1383–1390. doi: 10.1161/HYPERTENSIONAHA.119.13752
- Kan H, Stevens J, Heiss G, et al. Dietary fiber intake and retinal vascular caliber in the Atherosclerosis Risk in Communities Study. Am J Clin Nutrit. 2007;86(6):1626–1632. doi: 10.1093/ajcn/86.5.1626
- Sun C, Wang JJ, Islam FM, et al. Hypertension genes and retinal vascular calibre: the Cardiovascular Health Study. J Hum Hypertens. 2009;23:578–584. doi: 10.1038/jhh.2008.168
- Ikram MK, de Jong FJ, Vingerling JR, et al. Are retinal arteriolar or venular diameters associated with markers for cardiovascular disorders? The Rotterdam Study. Investig Ophthalmol Vis Sci. 2004;45(7):2129–2134. doi: 10.1167/iovs.03-1390
- Sun C, Liew G, Wang JJ, et al. Retinal vascular caliber, blood pressure, and cardiovascular risk factors in an Asian population: the Singapore Malay Eye Study. Investig Ophthalmol Vis Sci. 2008;49(5):1784–1790. doi: 10.1167/iovs.07-1450
- Jeganathan VSE, Sabanayagam C, Tai ES, et al. Effect of blood pressure on the retinal vasculature in a multi-ethnic Asian population. Hypertens Res. 2009;32:975–982. doi: 10.1038/hr.2009.130
- Danielescu C, Dabija MG, Nedelcu AH, et al. Automated retinal vessel analysis based on fundus photographs as a predictor for non-ophthalmic diseases — evolution and perspectives. J Pers Med. 2024;14(1):45. doi: 10.3390/jpm14010045
- Frank RN. Diabetic retinopathy and systemic factors. Middle East Afr J Ophthalmol. 2015;22(2):151. doi: 10.4103/0974-9233.154388
- Orlov NV, Coletta C, van Asten F, et al. Age-related changes of the retinal microvasculature. PLoS One. 2019;14(5):e0215916. doi: 10.1371/journal.pone.0215916
- Chamoso P, Rodríguez S, de la Prieta F, Bajo J. Classification of retinal vessels using a collaborative agent-based architecture. Ai Commun. 2018;31(5):427–444. doi: 10.3233/AIC-180772
- Chamoso P, Rodríguez S, De La Prieta F, et al. Software agents in retinal vessels classification. In: Criado Pacheco N, Carrascosa C, Osman N, Julián Inglada V, editors. Multi-Agent systems and agreement technologies: 14th European Conference, EUMAS2016, and 4th International Conference, AT; 2016, Dec 15–16; Valencia, Spain. Springer, Cham; 2017. P. 509–523. doi: 10.1007/978-3-319-59294-7_41
- Yip W, Tham YC, Hsu W, et al. Comparison of common retinal vessel caliber measurement software and a conversion algorithm. Transl Vis Sci Technol. 2016;5(5):11–11. doi: 10.1167/tvst.5.5.11
- Perez-Rovira A, MacGillivray T, Trucco E, et al. VAMPIRE: Vessel assessment and measurement platform for images of the retina. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2011. P. 3391–3394. doi: 10.1109/IEMBS.2011.6090918
- McGrory S, Taylor AM, Pellegrini E, et al. Towards standardization of quantitative retinal vascular parameters: comparison of SIVA and VAMPIRE measurements in the Lothian Birth Cohort 1936. Transl Vis Sci Technol. 2018;7(2):12–12. doi: 10.1167/tvst.7.2.12
- Malyutina SK, Direev AO, Munz IV, et al. Relationship of retinal vascular caliber with age and cardiometabolic diseases in the population over 50 years of age. Russian Annals of Ophthalmology. 2022;138(5):1421. doi: 10.17116/oftalma202213805114 EDN: ECQQCA
- Bikbov MM, Fajzrachmanov RR. The software for eye fundus diseases. Cataract and Refractive Surgery. 2012;12(2):63–65. EDN: PCPJDF
- Semenova NS, Akopyan VS, Filonenko IV. Retinal vessels caliber assessment in patients with arterial hypertension. Ophthalmology in Russia. 2012;9(1):58–62. doi: 10.18008/1816-5095-2012-1-58-62 EDN: PBCLSH
- Zhu Z, Shi D, Peng G, et al. Retinal age gap as a predictive biomarker for mortality risk. Br J Ophthalmol. 2023;107(4):547–554. doi: 10.1101/2020.12.24.20248817
- Chalam KV, Sambhav K. Optical coherence tomography angiography in retinal diseases. J Ophthalmic Vis Res. 2016;11(1):84–92. doi: 10.4103/2008-322X.180709
- Hua D, Xu Y, Zhang X, et al. Retinal microvascular changes in hypertensive patients with different levels of blood pressure control and without hypertensive retinopathy. Curr Eye Res. 2021;46(1):107–114. doi: 10.1080/02713683.2020.1775260
- Lim HB, Lee MW, Park JH, et al. Changes in ganglion cell-inner plexiform layer thickness and retinal microvasculature in hypertension: a optical coherence tomography angiography study. Am J Ophthalmol. 2019;199:167–176. doi: 10.1016/j.ajo.2018.11.016
- Hua D, Xu Y, Zeng X, et al. Use of optical coherence tomography angiography for assessment of microvascular changes in the macula and optic nerve head in hypertensive patients without hypertensive retinopathy. Microvasc Res. 2020;129:103969. doi: 10.1016/j.mvr.2019.103969
- Donati S, Maresca AM, Cattaneo J, et al. Optical coherence tomography angiography and arterial hypertension: a role in identifying subclinical microvascular damage? Eur J Ophthalmol. 2021;31(1):158–165. doi: 10.1177/1120672119880390
- Sun C, Ladores C, Hong J, et al. Systemic hypertension associated retinal microvascular changes can be detected with optical coherence tomography angiography. Sci Rep. 2020;10(1):9580. doi: 10.1038/s41598-020-66736-w
- Peng Q, Hu Y, Huang M, et al. Retinal neurovascular impairment in patients with essential hypertension: an optical coherence tomography angiography study. Investig Ophthalmol Vis Sci. 2020;61(8):42–42. doi: 10.1167/iovs.61.8.42
- Xu Q, Sun H, Huang X, Qu Y. Retinal microvascular metrics in untreated essential hypertensives using optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol. 2021;259:395–403. doi: 10.1007/s00417-020-04714-8
- Chua J, Le T-T, Tan B, et al. Choriocapillaris microvasculature dysfunction in systemic hypertension. Sci Rep. 2021;11(1):4603. doi: 10.1038/s41598-021-84136-6
- Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88. doi: 10.1016/j.media.2017.07.005
- Cheung CY, Xu D, Cheng C-Y, et al. A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre. Nat Biomed Eng. 2021;5(6):498–508. doi: 10.1038/s41551-020-00626-4
- Nusinovici S, Rim TH, Yu M, et al. Retinal photograph-based deep learning predicts biological age, and stratifies morbidity and mortality risk. Age and ageing. 2022;51(4):afac065. doi: 10.1093/ageing/afac065
Supplementary files


