Morphological assessment of dental implantation outcomes
- Authors: Maiborodin I.V.1, Sarkisiants B.K.2,3, Sheplev B.V.3, Maiborodina V.I.1, Shevela A.A.2
-
Affiliations:
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
- International Center of Implantology iDent
- Novosibirsk Medical and Dental Institute Dentmaster
- Issue: Vol 106, No 2 (2025)
- Pages: 277-286
- Section: Reviews
- URL: https://bakhtiniada.ru/kazanmedj/article/view/292226
- DOI: https://doi.org/10.17816/KMJ640899
- ID: 292226
Cite item
Abstract
Numerous publications have addressed gingival and bone augmentation involving both the alveolar processes of the jaws and the floor of the maxillary sinuses. In some cases, patients require not only dental restoration but also complex reconstruction of facial skeletal regions damaged by trauma, radiation exposure, cancer surgery, and other factors. Dental implantation is an essential component in the correction of extensive defects not only of the jaws but also of the paranasal sinuses. Additionally, various techniques have been described for covering the outer part of dental implants immediately after insertion to enhance integration. At the same time, certain disagreements remain regarding gingival manipulation during dental implantation and preparatory procedures. Some sources recommend covering implants with a flap of autologous soft tissue, whereas others support flapless approaches. Reports also differ on the source of soft tissue used for coverage: ranging from autologous grafts to allogeneic transplants, such as porcine-derived monolayer collagen matrices. There is no consensus on the optimal bone augmentation method for implant placement. Morphological data on the processes of lysis, replacement, or consolidation of autologous bone fragments that are placed into or left within tissues damaged during preparation and implantation are clearly insufficient, and existing publications lack detailed descriptions of these processes. All of this indicates that none of the challenges in dental implantation have been definitively resolved, including the need for a step-by-step understanding of the pathomorphological processes involved in bone graft consolidation or resorption.
Full Text
##article.viewOnOriginalSite##About the authors
Igor V. Maiborodin
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: imai@mail.ru
ORCID iD: 0000-0002-8182-5084
SPIN-code: 8626-5394
MD, Dr. Sci. (Med.), Professor, Chief Researcher, Laboratory of Invasive Medical Technologies
Russian Federation, 8 Lavrentiev ave, Novosibirsk,630090Boris K. Sarkisiants
International Center of Implantology iDent; Novosibirsk Medical and Dental Institute Dentmaster
Email: genus87@mail.ru
ORCID iD: 0009-0004-1986-4172
postgrad. Stud., Prosthodontist of Prosthodontist Depart.
Russian Federation, Novosibirsk; NovosibirskBoris V. Sheplev
Novosibirsk Medical and Dental Institute Dentmaster
Email: shepa@icloud.com
ORCID iD: 0009-0008-4140-3531
SPIN-code: 9905-4138
MD, Dr. Sci. (Med.), Rector
Russian Federation, NovosibirskVitalina I. Maiborodina
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Email: mai_@mail.ru
ORCID iD: 0000-0002-5169-6373
SPIN-code: 8492-6291
MD, Dr. Sci. (Med.), Leading Researcher, Lab. of Invasive Medical Technologies
Russian Federation, 8 Lavrentiev ave, Novosibirsk,630090Aleksandr A. Shevela
International Center of Implantology iDent
Email: mdshevela@gmail.com
ORCID iD: 0000-0001-9235-9384
SPIN-code: 7715-7009
MD, Dr. Sci. (Med.), Head of Oral Surgical Depart.
Russian Federation, NovosibirskReferences
- Fatani B, Almutairi ES, Almalky HA, et al. A Comparison of Knowledge and Skills Related to Up-to-Date Implant Techniques Among Prosthodontists, Periodontists, and Oral Surgeons: A Cross-Sectional Study. Cureus. 2022;14(10):e30370. doi: 10.7759/cureus.30370
- Jones A. Palatal bone plate to repair a deficient site in the esthetic zone. Int J Esthet Dent. 2023;18(1):14–25.
- Olesova VN, Shashmurina VR, Shugailov IA, et al. Study of the Biocompatibility of Titanium-Niobium Implants by the Parameters of Their Osseointegration under Experimental Conditions. Bull Exp Biol Med. 2019;166(5):686–688. (In Russ.) EDN: PIBMPX
- Khafizov IR, Mirgazizov MZ, Khafizova FA, et al. Justification of the choice of modern structural materials for prosthetics with beam systems with different positioning of dental implants to prevent disintegration processes. Russian Bulletin of Dental Implantology. 2020;(1–2(47–48)):82–91. EDN: IHPUIC
- Khafizova FA, Tayurskii DA, Kiiamov AG, et al. Changing the strength properties of superstructural elements of zirconia after mechanical processing according to x-ray diffraction analysis and its significance for dental ceramic implantology. Russian Bulletin of Dental Implantology. 2021;(1–2(51–52)):16–22. EDN: SAEVPR
- Kumar D, Sivaram G, Shivakumar B, Kumar T. Comparative evaluation of soft and hard tissue changes following endosseous implant placement using flap and flapless techniques in the posterior edentulous areas of the mandible-a randomized controlled trial. Oral Maxillofac Surg. 2018;22(2):215–223. doi: 10.1007/s10006-018-0695-9
- Zafiropoulos GG, John G. Use of Collagen Matrix for Augmentation of the Peri-implant Soft Tissue at the Time of Immediate Implant Placement. J Contemp Dent Pract. 2017;18(5):386–391. doi: 10.5005/jp-journals-10024-2052
- Naenni N, Bienz SP, Benic GI, et al. Volumetric and linear changes at dental implants following grafting with volume-stable three-dimensional collagen matrices or autogenous connective tissue grafts: 6-month data. Clin Oral Investig. 2018;22(3):1185–1195. doi: 10.1007/s00784-017-2210-3
- Schulze-Späte U, Dietrich T, Wu C, et al. Systemic vitamin D supplementation and local bone formation after maxillary sinus augmentation - a randomized, double-blind, placebo-controlled clinical investigation. Clin Oral Implants Res. 2016;27(6):701–706. doi: 10.1111/clr.12641
- Li G, Li P, Chen Q, et al. Current Updates on Bone Grafting Biomaterials and Recombinant Human Growth Factors Implanted Biotherapy for Spinal Fusion: A Review of Human Clinical Studies. Curr Drug Deliv. 2019;16(2):94–110. doi: 10.2174/1567201815666181024142354
- Li P, Zhu H, Huang D. Autogenous DDM versus Bio-Oss granules in GBR for immediate implantation in periodontal postextraction sites: A prospective clinical study. Clin Implant Dent Relat Res. 2018;20(6):923–928. doi: 10.1111/cid.12667
- Um IW, Kim YK, Mitsugi M. Demineralized dentin matrix scaffolds for alveolar bone engineering. J Indian Prosthodont Soc. 2017;17(2):120–127. doi: 10.4103/jips.jips_62_17
- Dłucik R, Orzechowska-Wylęgała B, Dłucik D, et al. Comparison of clinical efficacy of three different dentin matrix biomaterials obtained from different devices. Expert Rev Med Devices. 2023;20(4):313–327. doi: 10.1080/17434440.2023.2190512
- Sapoznikov L, Haim D, Zavan B, et al. A novel porcine dentin-derived bone graft material provides effective site stability for implant placement after tooth extraction: a randomized controlled clinical trial. Clin Oral Investig. 2023;27(6):2899–2911. doi: 10.1007/s00784-023-04888-5
- Aimetti M, Manavella V, Cricenti L, Romano F. A Novel Procedure for the Immediate Reconstruction of Severely Resorbed Alveolar Sockets for Advanced Periodontal Disease. Case Rep Dent. 2017;2017:9370693. doi: 10.1155/2017/9370693
- Deliberador TM, Begnini GJ, Tomazinho F, et al. Immediate Implant Placement and Provisionalization Using the Patient’s Extracted Crown: 12-Month Follow-Up. Compend Contin Educ Dent. 2018;39(3):e18–e21.
- Severi M, Simonelli A, Farina R, et al. Effect of lateral bone augmentation procedures in correcting peri-implant bone dehiscence and fenestration defects: A systematic review and network meta-analysis. Clin Implant Dent Relat Res. 2022;24(2):251–264. doi: 10.1111/cid.13078
- Odin G, Petitbois R, Cotten P, Philip P. Distraction Osteogenesis Using Bone Matrix Osteotensors in Ectodermal Dysplasia: A Case Report. Implant Dent. 2015;24(5):612–619. doi: 10.1097/ID.0000000000000310
- Pansegrau KJ, Fridrich KL, Lew D, Keller JC. A comparative study of osseointegration of titanium implants in autogenous and freeze-dried bone grafts. J Oral Maxillofac Surg. 1998;56(9):1067–1073; discussion 1073–1074. doi: 10.1016/s0278-2391(98)90258-0
- Chanavaz M. Sinus grafting related to implantology. Statistical analysis of 15 years of surgical experience (1979–1994). J Oral Implantol. 1996;22(2):119–130.
- Hatano N, Sennerby L, Lundgren S. Maxillary sinus augmentation using sinus membrane elevation and peripheral venous blood for implant-supported rehabilitation of the atrophic posterior maxilla: case series. Clin Implant Dent Relat Res. 2007;9(3):150–155. doi: 10.1111/j.1708-8208.2007.00043.x
- Browaeys H, Bouvry P, De Bruyn H. A literature review on biomaterials in sinus augmentation procedures. Clin Implant Dent Relat Res. 2007;9(3):166–177. doi: 10.1111/j.1708-8208.2007.00050.x
- Kübler NR, Will C, Depprich R, et al. Vergleichende Untersuchungen zur Sinusbodenelevation mit autogenem oder allogenem Knochengewebe. Mund- Kiefer- und Gesichtschir. 1999;3 Suppl 1:S53–60. German. doi: 10.1007/PL00014517
- Chen L, Zhou WQ, Wu YP, Lu JH. Clinical use of beta-tricalcium phosphate ceramics with patient’s own bone in maxillary elevation with osteotome. Shanghai Kou Qiang Yi Xue. 2011;20(3):282–285.
- Khairy NM, Shendy EE, Askar NA, El-Rouby DH. Effect of platelet rich plasma on bone regeneration in maxillary sinus augmentation (randomized clinical trial). Int J Oral Maxillofac Surg. 2013;42(2):249–255. doi: 10.1016/j.ijom.2012.09.009
- Qabbani AA, Bayatti SWA, Hasan H, et al. Clinical and Radiological Evaluation of Sinus Membrane Osteogenicity Subsequent to Internal Sinus Lifting and Implant Placement. J Craniofac Surg. 2020;31(3):e233–e236. doi: 10.1097/SCS.0000000000006106
- Soltan M, Smiler D, Ghostine M, et al. Antral membrane elevation using a post graft: a crestal approach. Gen Dent. 2012;60(2):e86–94.
- Maiborodin IV, Shevela AA, Marchukov SV, et al. Prolongation of Cleansing Damaged Tissues from Detritus Using Exosomes of Multipotent Stromal Cells. Novosti Khirurgii. 2021;29(4):401–411. doi: 10.18484/2305-0047.2021.4.401
- Maiborodin I, Shevela A, Matveeva V, et al. First Experimental Study of the Influence of Extracellular Vesicles Derived from Multipotent Stromal Cells on Osseointegration of Dental Implants. Int J Mol Sci. 2021;22(16):8774. doi: 10.3390/ijms22168774
- Liuti T, Smith S, Dixon PM. A Comparison of Computed Tomographic, Radiographic, Gross and Histological, Dental, and Alveolar Findings in 30 Abnormal Cheek Teeth from Equine Cadavers. Front Vet Sci. 2018;4:236. doi: 10.3389/fvets.2017.00236
- Liang B, Wang H, Wu D, Wang Z. Macrophage M1/M2 polarization dynamically adapts to changes in microenvironment and modulates alveolar bone remodeling after dental implantation. J Leukoc Biol. 2021;110(3):433–447. doi: 10.1002/JLB.1MA0121-001R
- Heijboer RRO, Lubberts B, Guss D, et al. Incidence and Risk Factors Associated with Venous Thromboembolism After Orthopaedic Below-knee Surgery. J Am Acad Orthop Surg. 2019;27(10):e482–e490. doi: 10.5435/JAAOS-D-17-00787
- Gurunathan U, Barras M, McDougall C, et al. Obesity and the Risk of Venous Thromboembolism after Major Lower Limb Orthopaedic Surgery: A Literature Review. Thromb Haemost. 2022;122(12):1969–1979. doi: 10.1055/s-0042-1757200
- Sharma P, Gautam A, Kumar P, et al. Bone marrow emboli following bone marrow procedure: A possible complication. Indian J Pathol Microbiol. 2022;65(4):946–947. doi: 10.4103/ijpm.ijpm_442_21
- Maiborodin IV, Ryaguzov ME, Kuzkin SA, et al. Risk of Thromboembolism After Intraosseous Implantation of Metallic Devices with Extracellular Vesicles Derived from Multipotent Stromal Cells: Preliminary Results. Traumatology and Orthopedics of Russia. 2024;30(2):131–142. doi: 10.17816/2311-2905-17519
Supplementary files
