Cervical elasticity during pregnancy: current state of the problem

Cover Page

Cite item

Full Text

Abstract

Uterine cervix undergoes various changes throughout the pregnancy, which are characterized by the general term “remodeling”. In particular, this process includes changes of the length (shortening) and consistency (softening) of uterine cervix. The latter from the clinical point of view is important not only for observation of pregnant women with normal course of pregnancy but also for predicting such states as an outcome of labor induction or preterm delivery. Traditionally, cervical elasticity has been estimated through digital examination and Bishop score, however, currently there are available imaging techniques, which are more objective and precise. Amongst these methods, elastography plays a special role. Elastography allows measuring the capacity of tissues to deform. The softer the tissues, the higher mentioned capacity under the applied pressure. Currently there are various methods of elastography, starting from real-time elastography, when the capacity to be deformed is registered under the influence of physiologic movements or minimal manual pressure, to shear wave elastography, when the velocity of propagation of shear waves is measured. Although there are number of methods of elastography and perspectives of their use in obstetric practice, at the present time there is no consensus on standardization of these methods. In the cervical elastography this task is even more complicated, because there is no reference tissue to be compared with, especially this is true for strain elastography. The aim of this study was comparative analysis of methods estimating cervical elasticity and underlining current problems from the clinical point of view.

About the authors

M G Tukhbatullin

Kazan State Medical Academy

Author for correspondence.
Email: kyanakova80@gmail.com
Kazan, Russia

K V Yanakova

City Hospital No 7

Email: kyanakova80@gmail.com
Kazan, Russia

References

  1. Aylamazyan E.K. Akusherstvo: uchebnik dlya meditsinskikh vuzov. (Obstetrics: textbook for medical universities.) 7th ed. Saint Petersburg: SpetsLit. 2010; 543 p. (In Russ.)
  2. House M., Kaplan D.L., Socrate S. Relationships between mechanical properties and extracellular matrix constituents of the cervical stroma during pregnancy. Sem. Perinatol. 2009; 20: 43–48. doi: 10.1053/j.semperi.2009.06.002.
  3. Carlson L.C., Hall T.J., Rosado-Mendez I.M., et al. Detection of Changes in Cervical Softness Using Shear Wave Speed in Early versus Late Pregnancy: An in Vivo Cross-Sectional Study. Ultrasound Med. Biol. 2018; 44 (3): 515–521. doi: 10.1016/j.ultrasmedbio.2017.10.017.
  4. Hyunjung K., Han Sung H. Elastographic measurement of the cervix during pregnancy: Current status and future challenges. Obstet. Gynecol. Sci. 2017; 60 (1): 1–7. doi: 10.5468/ogs.2017.60.1.1.
  5. Bishop E.H. Pelvic scoring for elective induction. Obstet. Gynecol. 1964; 24: 266–268. PMID: 14199536.
  6. Poellmann M.J., Chien E.K., McFarlin B.L., Wagoner A.J. Mechanical and structural changes of the rat cervix in late-stage pregnancy. J. Mech. Behav. Biomed. Mater. 2013; 17: 66–75. doi: 10.1016/j.jmbbm.2012.08.002.
  7. Mazza E., Parra-Saavedra M., Bajka M., et al. In vivo assessment of the biochemical properties of the uterine cervix in pregnancy. Prenatal Diagnosis. 2014; 34: 33–41. doi: 10.1002/pd.4260.
  8. McFarlin B.L., Bigelow T.A., Laybed Y., et al. Ultrasonic attenuation estimation of the pregnant cervix: a preliminary report. Ultrasound Obstet. Gynecol. 2010; 36: 218–225. doi: 10.1002/uog.7643.
  9. Parra-Saavedra M., Gomez L., Barrero A., et al. Prediction of preterm birth using the cervical consistency index. Ultrasound Obstet. Gynecol. 2011; 38: 44–51. doi: 10.1002/uog.9010.
  10. Badir S., Mazza E., Bajka M. Cervical softening occurs early in pregnancy: characterization of cervical stiffness in 100 healthy women using the aspiration technique. Prenat. Diagn. 2013; 27: 143–153. doi: 10.1002/pd.4116.
  11. O’Connell M.P., Tidy J., Wisher S.J., et al. An in vivo comparative study of the pregnant and nonpregnant cervix using electrical impedance measurements; an objective measure of prelabor cervical change. J. Matern. Fetal. Neonatal. Med. 2003; 14 (6): 389–391. doi: 10.1111/j.1471-0528.2000.tb10410.x.
  12. Jokhi R.P., Brown B.H., Anumba D.O. The role of cervical electrical impedance spectroscopy in the prediction of the course and outcome of induced labor. BMC Pregnancy Childbirth. 2009; 9: 40. doi: 10.1590/2446-4740.05617.
  13. Gandhi S.V., Walker D.C., Brown B.H., Anumba D.O.C. Comparison of human uterine cervical electrical impedance measurements derived using two tetrapolar probes of different sizes. Biomed Eng. Online. 2006; 5: 62. doi: 10.1186/1475-925X-5-62.
  14. Maul H., Mackay L., Garfield R. Cervical ripening: biochemical, molecular, and clinical considerations. Clin. Obstet & Gynecol. 2006; 49: 70–76. doi: 10.1097/00003081-200609000-00015.
  15. Tekesin I., Wallwiener D., Schmidt S. The value of quantitative ultrasound tissue characterization of the cervix and rapid fetal fibronectin in predicting preterm delivery. J. Prenat. Med. 2005; 33 (5): 383–391. doi: 10.1515/JPM.2005.070.
  16. Kuwata T., Matsubara S., Taniguchi N., et al. A novel method for evaluating uterine cervical consistency using vaginal ultrasound gray-level histogram. J. Perinat. Med. 2010; 38 (5): 451–567. doi: 10.1515/JPM.2010.079.
  17. Hornung R., Spichitg S., Banos A., et al. Frequency-domain near-infrared spectroscopy of the uterine cervix during regular pregnancies. Laser Med. Sci. 2011; 26: 205–212. doi: 10.1007/s10103-010-0832-7.
  18. Krouskop T.A., Dougherty D.R., Vinson F.S. A pulsed Doppler ultrasonic system for making non-invasive mea­sure­ments of the mechanical properties of soft tissue. J. Rehabil. Res. Dev. 1987; 24: 1–8. PMID: 3295197.
  19. Ophir J., Cespedes I., Ponnekanti H., et al. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason. Imag. 1991; 13: 111–134. doi: 10.1177/016173469101300201.
  20. Yanakova K.V., Tukhbatullin M.G. Elastichnostʹ sheyki matki u beremennykh gruppy vysokogo riska po khromosomnoy patologii ploda. Prakticheskaya meditsina. 2016; 9: 131–141. (In Russ.)
  21. Sarvazyan A., Hall T.J., Urban M.W., et al. An overview of elastography — an emerging branch of medical imaging. Curr. Med. Imaging Rev. 2011; 7 (4): 255–282. doi: 10.2174/157340511798038684.
  22. Hernandez-Andrade E., Maymon E., Luewan S., et al. A soft cervix, categorized by shear-wave elastography, in women with short or with normal cervical length at 18–24 weeks is associated with a higher prevalence of ­spontaneous preterm delivery. J. Perinat. Med. 2018; 6 (5): 489–501. doi: 10.1515/jpm-2018-0062.
  23. Swiatkowska-Freund M., Traczyk-Los A., Preis K., et al. Prognostic value of elastography in predicting premature delivery. Ginekol. Pol. 2014; 85: 204–207. doi: 10.17772/gp/1714.
  24. Wozniak S., Czuczwar P., Szkodziak P., et al. Elastography in predicting pre­term delivery in asymptomatic, low-risk women: a pro­spective observational study. BMC Pregnancy Childbirth. 2014; 14: 238. doi: 10.1186/1471-2393-14-238.
  25. Hernandez-Andrade E., Romero R,. Korzeniewski S.J., et al. Cervical strain determined by ultrasound elastography and its associa­tion with spontaneous preterm delivery. J. Perinat. Med. 2014; 42: 159–169. doi: 10.1515/jpm-2013-0277.
  26. Hernandez-Andrade E., Garcia M,. Ahn H., et al. Strain at the internal cervical os assessed with quasi-­static elastography is associated with the risk of spontaneous preterm delivery at ≤34 weeks of gestation. J. Perinat. Med. 2015; 43: 657–666. doi: 10.1515/jpm-2014-0382.
  27. Sabiani L., Haumonte J.B., Loundou A., et al. Cervical HI-RTE elastography and pregnancy outcome: a prospective study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015; 186: 80–84. doi: 10.1016/j.ejogrb.2015.01.016.
  28. Patent RF № 0002626144 issued on 21.07.2017. Method of selection of pregnant women for invasive diagnosis of fetal chromosomal anomalies in the first trimester by qualitative sonoelastography. Patent of Russie № 2626144. 2017. Byul. № 21, Tukhba­tullin M.G., Yanakova K.V., Teregu­lova L.E. (In Russ.)
  29. Patent RF № 0002629236 issued on 28.08.2017. Method of selection of pregnant women for invasive diagnosis of fetal chromosomal anomalies in the first trimester by shear wave sonoelastography. Patent of Russia № 2629236.2017. Byul. № 22, Tukhba­tullin M.G., Yanakova K.V., Teregulova L.E. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2018 Tukhbatullin M.G., Yanakova K.V.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».